Suppr超能文献

多通道脑电图信号的压缩感知:同时稀疏性和低秩优化

Compressed Sensing of Multichannel EEG Signals: The Simultaneous Cosparsity and Low-Rank Optimization.

作者信息

Liu Yipeng, De Vos Maarten, Van Huffel Sabine

出版信息

IEEE Trans Biomed Eng. 2015 Aug;62(8):2055-61. doi: 10.1109/TBME.2015.2411672. Epub 2015 Mar 11.

Abstract

GOAL

This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals.

METHODS

An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model.

RESULTS

The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity.

CONCLUSION

The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals.

SIGNIFICANCE

The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.

摘要

目标

本文探讨了在多通道脑电信号的压缩感知中,一些脑电信号缺乏良好的稀疏表示以及单通道处理在计算上效率不高的问题。

方法

提出了一种具有L0范数和Schatten-0范数的优化模型,以在重构的多通道脑电信号中强制实现协同稀疏性和低秩结构。采用凸松弛和带乘子交替方向法的全局共识优化来计算该优化模型。

结果

在准确性和计算复杂度方面,多通道脑电信号重构的性能均得到了提高。

结论

对于脑电信号的压缩感知,所提出的方法比先前的稀疏信号恢复方法更具优势。

意义

所提出的方法即使在信号没有良好稀疏表示的情况下,也能成功实现脑电信号的压缩感知。使用压缩感知将大大降低无线脑电系统的功耗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验