Liu Yipeng, De Vos Maarten, Van Huffel Sabine
IEEE Trans Biomed Eng. 2015 Aug;62(8):2055-61. doi: 10.1109/TBME.2015.2411672. Epub 2015 Mar 11.
This paper deals with the problems that some EEG signals have no good sparse representation and single-channel processing is not computationally efficient in compressed sensing of multichannel EEG signals.
An optimization model with L0 norm and Schatten-0 norm is proposed to enforce cosparsity and low-rank structures in the reconstructed multichannel EEG signals. Both convex relaxation and global consensus optimization with alternating direction method of multipliers are used to compute the optimization model.
The performance of multichannel EEG signal reconstruction is improved in term of both accuracy and computational complexity.
The proposed method is a better candidate than previous sparse signal recovery methods for compressed sensing of EEG signals.
The proposed method enables successful compressed sensing of EEG signals even when the signals have no good sparse representation. Using compressed sensing would much reduce the power consumption of wireless EEG system.
本文探讨了在多通道脑电信号的压缩感知中,一些脑电信号缺乏良好的稀疏表示以及单通道处理在计算上效率不高的问题。
提出了一种具有L0范数和Schatten-0范数的优化模型,以在重构的多通道脑电信号中强制实现协同稀疏性和低秩结构。采用凸松弛和带乘子交替方向法的全局共识优化来计算该优化模型。
在准确性和计算复杂度方面,多通道脑电信号重构的性能均得到了提高。
对于脑电信号的压缩感知,所提出的方法比先前的稀疏信号恢复方法更具优势。
所提出的方法即使在信号没有良好稀疏表示的情况下,也能成功实现脑电信号的压缩感知。使用压缩感知将大大降低无线脑电系统的功耗。