Suppr超能文献

使用低能耗和低成本硬件的 EEG 的压缩感知进行无线远程监护。

Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware.

机构信息

Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407, USA.

出版信息

IEEE Trans Biomed Eng. 2013 Jan;60(1):221-4. doi: 10.1109/TBME.2012.2217959. Epub 2012 Sep 7.

Abstract

Telemonitoring of electroencephalogram (EEG) through wireless body-area networks is an evolving direction in personalized medicine. Among various constraints in designing such a system, three important constraints are energy consumption, data compression, and device cost. Conventional data compression methodologies, although effective in data compression, consumes significant energy and cannot reduce device cost. Compressed sensing (CS), as an emerging data compression methodology, is promising in catering to these constraints. However, EEG is nonsparse in the time domain and also nonsparse in transformed domains (such as the wavelet domain). Therefore, it is extremely difficult for current CS algorithms to recover EEG with the quality that satisfies the requirements of clinical diagnosis and engineering applications. Recently, block sparse Bayesian learning (BSBL) was proposed as a new method to the CS problem. This study introduces the technique to the telemonitoring of EEG. Experimental results show that its recovery quality is better than state-of-the-art CS algorithms, and sufficient for practical use. These results suggest that BSBL is very promising for telemonitoring of EEG and other nonsparse physiological signals.

摘要

通过无线体域网对脑电图(EEG)进行远程监测是个性化医疗的一个发展方向。在设计此类系统时,有三个重要的约束条件,即能量消耗、数据压缩和设备成本。传统的数据压缩方法虽然在数据压缩方面非常有效,但会消耗大量能量,并且无法降低设备成本。压缩感知(CS)作为一种新兴的数据压缩方法,在满足这些约束方面具有很大的潜力。然而,EEG 在时域中是非稀疏的,在变换域(如小波域)中也是非稀疏的。因此,当前的 CS 算法极难恢复出满足临床诊断和工程应用要求的 EEG 质量。最近,块稀疏贝叶斯学习(BSBL)被提出作为 CS 问题的一种新方法。本研究将该技术引入到 EEG 的远程监测中。实验结果表明,其恢复质量优于最先进的 CS 算法,足以满足实际应用的需求。这些结果表明,BSBL 非常有前途用于 EEG 和其他非稀疏生理信号的远程监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验