Suppr超能文献

一种用于新冠病毒检测的混合逆转录聚合酶链反应检测的压缩感知方法。

A Compressed Sensing Approach to Pooled RT-PCR Testing for COVID-19 Detection.

作者信息

Ghosh Sabyasachi, Agarwal Rishi, Rehan Mohammad Ali, Pathak Shreya, Agarwal Pratyush, Gupta Yash, Consul Sarthak, Gupta Nimay, Goenka Ritesh, Rajwade Ajit, Gopalkrishnan Manoj

机构信息

1 Department of Computer Science and EngineeringIIT Bombay Mumbai 400076 India.

2 Department of Electrical EngineeringIIT Bombay Mumbai 400076 India.

出版信息

IEEE Open J Signal Process. 2021 Apr 27;2:248-264. doi: 10.1109/OJSP.2021.3075913. eCollection 2021.

Abstract

We propose 'Tapestry', a single-round pooled testing method with application to COVID-19 testing using quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) that can result in shorter testing time and conservation of reagents and testing kits, at clinically acceptable false positive or false negative rates. Tapestry combines ideas from compressed sensing and combinatorial group testing to create a new kind of algorithm that is very effective in deconvoluting pooled tests. Unlike Boolean group testing algorithms, the input is a quantitative readout from each test and the output is a list of viral loads for each sample relative to the pool with the highest viral load. For guaranteed recovery of [Formula: see text] infected samples out of [Formula: see text] being tested, Tapestry needs only [Formula: see text] tests with high probability, using random binary pooling matrices. However, we propose deterministic binary pooling matrices based on combinatorial design ideas of Kirkman Triple Systems, which balance between good reconstruction properties and matrix sparsity for ease of pooling while requiring fewer tests in practice. This enables large savings using Tapestry at low prevalence rates while maintaining viability at prevalence rates as high as 9.5%. Empirically we find that single-round Tapestry pooling improves over two-round Dorfman pooling by almost a factor of 2 in the number of tests required. We evaluate Tapestry in simulations with synthetic data obtained using a novel noise model for RT-PCR, and validate it in wet lab experiments with oligomers in quantitative RT-PCR assays. Lastly, we describe use-case scenarios for deployment.

摘要

我们提出了“织锦”(Tapestry)方法,这是一种单轮混合检测方法,可应用于使用定量逆转录聚合酶链反应(RT-PCR)进行的新冠病毒检测,它能在临床可接受的假阳性或假阴性率下,缩短检测时间并节省试剂和检测试剂盒。“织锦”方法融合了压缩感知和组合群测试的理念,创建了一种在解卷积混合测试方面非常有效的新型算法。与布尔群测试算法不同,其输入是每次测试的定量读数,输出是每个样本相对于病毒载量最高的混合样本的病毒载量列表。为了以高概率保证从正在检测的[公式:见原文]个样本中检测出[公式:见原文]个感染样本,“织锦”方法仅需使用随机二元混合矩阵进行[公式:见原文]次测试。然而,我们基于柯克曼三元系的组合设计理念提出了确定性二元混合矩阵,该矩阵在良好的重构特性和矩阵稀疏性之间取得平衡,便于混合操作,同时在实际应用中所需测试次数更少。这使得在低流行率情况下使用“织锦”方法能大幅节省成本,同时在高达9.5%的流行率下仍保持可行性。通过实验我们发现,单轮“织锦”混合检测在所需测试次数上比两轮多夫曼混合检测提高了近2倍。我们使用一种用于RT-PCR的新型噪声模型生成的合成数据在模拟中评估了“织锦”方法,并在定量RT-PCR测定中使用寡聚物进行的湿实验室实验中对其进行了验证。最后,我们描述了其部署的用例场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/8545028/4678f12974a2/rajwa1-3075913.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验