Suppr超能文献

一项关于遗传性缺失的全基因组研究确定了两个与非综合征性单纯性口腔裂隙相关的区域。

A genome-wide study of inherited deletions identified two regions associated with nonsyndromic isolated oral clefts.

作者信息

Younkin Samuel G, Scharpf Robert B, Schwender Holger, Parker Margaret M, Scott Alan F, Marazita Mary L, Beaty Terri H, Ruczinski Ingo

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore.

出版信息

Birth Defects Res A Clin Mol Teratol. 2015 Apr;103(4):276-83. doi: 10.1002/bdra.23362. Epub 2015 Mar 16.

Abstract

BACKGROUND

DNA copy number variants play an important part in the development of common birth defects such as oral clefts. Individual patients with multiple birth defects (including oral clefts) have been shown to carry small and large chromosomal deletions.

METHODS

We investigated the role of polymorphic copy number deletions by comparing transmission rates of deletions from parents to offspring in case-parent trios of European ancestry ascertained through a cleft proband with trios ascertained through a normal offspring. DNA copy numbers in trios were called using the joint hidden Markov model in the freely available PennCNV software. All statistical analyses were performed using Bioconductor tools in the open source environment R.

RESULTS

We identified a 67 kb region in the gene MGAM on chromosome 7q34, and a 206 kb region overlapping genes ADAM3A and ADAM5 on chromosome 8p11, where deletions are more frequently transmitted to cleft offspring than control offspring.

CONCLUSIONS

These genes or nearby regulatory elements may be involved in the etiology of oral clefts.

摘要

背景

DNA拷贝数变异在常见出生缺陷如腭裂的发生发展中起重要作用。已表明患有多种出生缺陷(包括腭裂)的个体患者携带小的和大的染色体缺失。

方法

我们通过比较在以腭裂先证者确定的欧洲血统病例-父母三联体与以正常后代确定的三联体中,缺失从父母向后代的传递率,研究多态性拷贝数缺失的作用。使用免费的PennCNV软件中的联合隐马尔可夫模型对三联体中的DNA拷贝数进行分型。所有统计分析均使用开源环境R中的Bioconductor工具进行。

结果

我们在7号染色体q34区域的MGAM基因中鉴定出一个67 kb的区域,以及在8号染色体p11区域与ADAM3A和ADAM5基因重叠的一个206 kb的区域,其中缺失传递给腭裂后代的频率高于对照后代。

结论

这些基因或附近的调控元件可能参与腭裂的病因学。

相似文献

1
A genome-wide study of inherited deletions identified two regions associated with nonsyndromic isolated oral clefts.
Birth Defects Res A Clin Mol Teratol. 2015 Apr;103(4):276-83. doi: 10.1002/bdra.23362. Epub 2015 Mar 16.
3
Further evidence for deletions in 7p14.1 contributing to nonsyndromic cleft lip with or without cleft palate.
Birth Defects Res A Clin Mol Teratol. 2016 Sep;106(9):767-72. doi: 10.1002/bdra.23539. Epub 2016 Jul 7.
4
5
rs1801133C>T polymorphism in MTHFR is a risk factor for nonsyndromic cleft lip with or without cleft palate in the Brazilian population.
Birth Defects Res A Clin Mol Teratol. 2015 Apr;103(4):292-8. doi: 10.1002/bdra.23365. Epub 2015 Mar 24.
6
Defining predictors of cleft lip and palate risk.
J Dent Res. 2012 Jun;91(6):556-61. doi: 10.1177/0022034512444928. Epub 2012 Apr 10.
7
Fast detection of de novo copy number variants from SNP arrays for case-parent trios.
BMC Bioinformatics. 2012 Dec 12;13:330. doi: 10.1186/1471-2105-13-330.
9
Breakthroughs in the genetics of orofacial clefting.
Trends Mol Med. 2011 Dec;17(12):725-33. doi: 10.1016/j.molmed.2011.07.007. Epub 2011 Aug 30.
10
Association of the GABRB3 gene with nonsyndromic oral clefts.
Cleft Palate Craniofac J. 2008 May;45(3):261-6. doi: 10.1597/06-142.

引用本文的文献

2
Exosomes-a potential indicator and mediator of cleft lip and palate: a narrative review.
Ann Transl Med. 2021 Sep;9(18):1485. doi: 10.21037/atm-21-4198.
4
ADAM3A copy number gains occur in a subset of conjunctival squamous cell carcinoma and its high grade precursors.
Hum Pathol. 2019 Dec;94:92-97. doi: 10.1016/j.humpath.2019.08.020. Epub 2019 Sep 5.
6
Identification of as a Novel Clefting and Craniofacial Patterning Gene in Humans.
Genetics. 2018 Jan;208(1):283-296. doi: 10.1534/genetics.117.300535. Epub 2017 Nov 21.
7
Genetics and genomics etiology of nonsyndromic orofacial clefts.
Mol Genet Genomic Med. 2017 Jan 17;5(1):3-7. doi: 10.1002/mgg3.272. eCollection 2017 Jan.

本文引用的文献

1
Long-range enhancers regulating Myc expression are required for normal facial morphogenesis.
Nat Genet. 2014 Jul;46(7):753-8. doi: 10.1038/ng.2971. Epub 2014 May 25.
3
Software for computing and annotating genomic ranges.
PLoS Comput Biol. 2013;9(8):e1003118. doi: 10.1371/journal.pcbi.1003118. Epub 2013 Aug 8.
4
De novo 2.3 Mb microdeletion of 1q32.2 involving the Van der Woude Syndrome locus.
Mol Cytogenet. 2013 Aug 6;6:31. doi: 10.1186/1755-8166-6-31. eCollection 2013.
5
Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study.
Hum Genet. 2013 Jul;132(7):771-81. doi: 10.1007/s00439-013-1283-6. Epub 2013 Mar 20.
6
Fast detection of de novo copy number variants from SNP arrays for case-parent trios.
BMC Bioinformatics. 2012 Dec 12;13:330. doi: 10.1186/1471-2105-13-330.
8
Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci.
Nat Genet. 2012 Sep;44(9):968-71. doi: 10.1038/ng.2360. Epub 2012 Aug 5.
9
Development of the lip and palate: FGF signalling.
Front Oral Biol. 2012;16:71-80. doi: 10.1159/000337618. Epub 2012 Jun 25.
10
The evolution of human genetic studies of cleft lip and cleft palate.
Annu Rev Genomics Hum Genet. 2012;13:263-83. doi: 10.1146/annurev-genom-090711-163729. Epub 2012 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验