Suppr超能文献

休克释放胆汁酸,导致血小板抑制和纤维蛋白溶解。

Shock releases bile acid inducing platelet inhibition and fibrinolysis.

作者信息

Wiener Gregory, Moore Hunter B, Moore Ernest E, Gonzalez Eduardo, Diamond Scott, Zhu Shu, D'Alessandro Angelo, Banerjee Anirban

机构信息

Department of Surgery, University of Colorado Denver, Aurora, Colorado.

Department of Surgery, University of Colorado Denver, Aurora, Colorado.

出版信息

J Surg Res. 2015 May 15;195(2):390-5. doi: 10.1016/j.jss.2015.01.046. Epub 2015 Jan 29.

Abstract

BACKGROUND

Metabolites are underappreciated for their effect on coagulation. Taurocholic acid (TUCA), a bile acid, has been shown to regulate cellular activity and promote fibrin sealant degradation. We hypothesize that TUCA impairs whole blood clot formation and promotes fibrinolysis.

METHODS

TUCA was exogenously added to whole blood obtained from volunteers. A titration from 250 μM-750 μM was used due to biologic relevance. Whole blood mixtures were assayed using thrombelastography for clot strength (maximum amplitude [MA]) and fibrinolysis (LY30) quantification. Tranexamic acid was used to block plasmin-mediated fibrinolysis. Platelet microfluidics were performed. A proteomic analysis was completed on citrated plasma obtained from a shock and resuscitation rat model.

RESULTS

Fibrinolysis increased when 750-μM TUCA was added to whole blood (median LY30 0.08-5.7, P = 0.010) and clot strength decreased (median MA of 53.3-43.8, P = 0.010). The addition of tranexamic acid, to a 750-μM TUCA titration, partially reversed the induced fibrinolysis (LY30: without 7.7 versus with 2.7) and the decrease in clot strength (MA: without 48.2 versus with 53.2), but did not reverse the effects to whole blood levels. Platelet function reduced by 50% in the presence of 100-μM TUCA. Rats had a median 52-fold increase in TUCA, after a shock state that stayed elevated after resuscitation.

CONCLUSIONS

TUCA reduces clot strength and promotes fibrinolysis. The clot strength reduction is attributable to platelet inhibition. This metabolic effect on coagulation warrants further investigation, as localized areas of the body, with high levels of bile acid, may be at risk for postoperative bleeding.

摘要

背景

代谢物对凝血的影响尚未得到充分认识。牛磺胆酸(TUCA)作为一种胆汁酸,已被证明可调节细胞活性并促进纤维蛋白密封剂降解。我们推测TUCA会损害全血凝血形成并促进纤维蛋白溶解。

方法

将TUCA外源性添加到从志愿者获得的全血中。由于生物学相关性,采用了250μM - 750μM的滴定法。使用血栓弹力图对全血混合物进行检测,以定量凝血强度(最大振幅[MA])和纤维蛋白溶解(LY30)。使用氨甲环酸阻断纤溶酶介导的纤维蛋白溶解。进行了血小板微流控实验。对从休克和复苏大鼠模型获得的枸橼酸血浆完成了蛋白质组学分析。

结果

当向全血中添加750μM TUCA时,纤维蛋白溶解增加(LY30中位数从0.08增加到5.7,P = 0.010),凝血强度降低(MA中位数从53.3降至43.8,P = 0.010)。在750μM TUCA滴定中加入氨甲环酸,部分逆转了诱导的纤维蛋白溶解(LY30:不加时为7.7,加时为2.7)和凝血强度的降低(MA:不加时为48.2,加时为53.2),但未将影响逆转至全血水平。在存在100μM TUCA的情况下,血小板功能降低了50%。大鼠在休克状态后TUCA中位数增加了52倍,复苏后仍保持升高。

结论

TUCA降低凝血强度并促进纤维蛋白溶解。凝血强度降低归因于血小板抑制。这种对凝血的代谢影响值得进一步研究,因为身体中胆汁酸水平高的局部区域可能有术后出血风险。

相似文献

1
Shock releases bile acid inducing platelet inhibition and fibrinolysis.
J Surg Res. 2015 May 15;195(2):390-5. doi: 10.1016/j.jss.2015.01.046. Epub 2015 Jan 29.
2
Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock.
Surgery. 2015 Aug;158(2):386-92. doi: 10.1016/j.surg.2015.04.008. Epub 2015 Jun 5.
3
Thrombelastography indicates limitations of animal models of trauma-induced coagulopathy.
J Surg Res. 2017 Sep;217:207-212. doi: 10.1016/j.jss.2017.05.027. Epub 2017 May 11.
7
Hemoglobin-based oxygen carriers promote systemic hyperfibrinolysis that is both dependent and independent of plasmin.
J Surg Res. 2017 Jun 1;213:166-170. doi: 10.1016/j.jss.2015.04.077. Epub 2015 Apr 25.
9
Thromboelastographic analysis of novel polyethylene glycol based low volume resuscitation solutions.
PLoS One. 2018 Nov 15;13(11):e0207147. doi: 10.1371/journal.pone.0207147. eCollection 2018.
10
Microfluidics contrasted to thrombelastography: perplexities in defining hypercoagulability.
J Surg Res. 2018 Nov;231:54-61. doi: 10.1016/j.jss.2018.04.059. Epub 2018 Jun 8.

引用本文的文献

3
Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near.
Transfus Med Hemother. 2023 Mar 8;50(3):174-183. doi: 10.1159/000529744. eCollection 2023 Jun.
4
Omics Signatures of Tissue Injury and Hemorrhagic Shock in Swine.
Ann Surg. 2023 Dec 1;278(6):e1299-e1312. doi: 10.1097/SLA.0000000000005944. Epub 2023 Jun 19.
6
Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration.
Front Cell Infect Microbiol. 2022 Aug 12;12:968992. doi: 10.3389/fcimb.2022.968992. eCollection 2022.
7
Retention of functional mitochondria in mature red blood cells from patients with sickle cell disease.
Br J Haematol. 2022 Aug;198(3):574-586. doi: 10.1111/bjh.18287. Epub 2022 Jun 7.
8
Importance of catecholamine signaling in the development of platelet exhaustion after traumatic injury.
J Thromb Haemost. 2022 Sep;20(9):2109-2118. doi: 10.1111/jth.15763. Epub 2022 May 30.
10
Irradiation Causes Alterations of Polyamine, Purine, and Sulfur Metabolism in Red Blood Cells and Multiple Organs.
J Proteome Res. 2022 Feb 4;21(2):519-534. doi: 10.1021/acs.jproteome.1c00912. Epub 2022 Jan 19.

本文引用的文献

1
Analytical characterization of the role of phospholipids in platelet adhesion and secretion.
Anal Chem. 2015 Jan 6;87(1):413-21. doi: 10.1021/ac502293p. Epub 2014 Dec 12.
2
Role of ischemic preconditioning in hepatic ischemia-reperfusion injury.
Hepatobiliary Surg Nutr. 2014 Aug;3(4):179-84. doi: 10.3978/j.issn.2304-3881.2014.06.03.
4
Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity.
PLoS One. 2014 May 16;9(5):e97249. doi: 10.1371/journal.pone.0097249. eCollection 2014.
8
Evaluation of serum bile acid profiles as biomarkers of liver injury in rodents.
Toxicol Sci. 2014 Jan;137(1):12-25. doi: 10.1093/toxsci/kft221. Epub 2013 Oct 1.
10
Discrepant fibrinolytic response in plasma and whole blood during experimental endotoxemia in healthy volunteers.
PLoS One. 2013;8(3):e59368. doi: 10.1371/journal.pone.0059368. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验