Luo Wenhao, Sankar Meenakshisundaram, Beale Andrew M, He Qian, Kiely Christopher J, Bruijnincx Pieter C A, Weckhuysen Bert M
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
1] Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands [2] UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK [3] Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
Nat Commun. 2015 Mar 17;6:6540. doi: 10.1038/ncomms7540.
The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into γ-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, selective and stable supported metal catalysts for this reaction and on the beneficial effects of metal nano-alloying. Bimetallic random alloys of gold-palladium and ruthenium-palladium supported on titanium dioxide are prepared with a modified metal impregnation method. Gold-palladium/titanium dioxide shows a marked,~27-fold increase in activity (that is, turnover frequency of 0.1 s(-1)) compared with its monometallic counterparts. Although ruthenium-palladium/titanium dioxide is not only exceptionally active (that is, turnover frequency of 0.6 s(-1)), it shows excellent, sustained selectivity to γ-valerolactone (99%). The dilution and isolation of ruthenium by palladium is thought to be responsible for this superior catalytic performance. Alloying, furthermore, greatly improves the stability of both supported nano-alloy catalysts.
在许多生物炼制方案中,关键平台分子乙酰丙酸催化加氢生成γ-戊内酯,被视为将木质纤维素生物质转化为可再生燃料和化学品的关键反应之一。在此,我们报告了用于该反应的高活性、选择性和稳定性负载型金属催化剂的开发情况以及金属纳米合金化的有益效果。采用改进的金属浸渍法制备了负载在二氧化钛上的金-钯和钌-钯双金属无规合金。与单金属对应物相比,金-钯/二氧化钛的活性显著提高,约提高了27倍(即周转频率为0.1 s⁻¹)。尽管钌-钯/二氧化钛不仅活性极高(即周转频率为0.6 s⁻¹),而且对γ-戊内酯表现出优异的持续选择性(99%)。据认为,钯对钌的稀释和隔离是这种优异催化性能的原因。此外,合金化极大地提高了两种负载型纳米合金催化剂的稳定性。