Department of Neurology, Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
J Neurol Neurosurg Psychiatry. 2016 Mar;87(3):235-43. doi: 10.1136/jnnp-2014-309582. Epub 2015 Mar 17.
Alzheimer's disease (AD) is a heterogeneous disorder with complex underlying neuropathology that is still not completely understood. For better understanding of this heterogeneity, we aimed to identify cognitive subtypes using latent class analysis (LCA) in a large sample of patients with AD dementia. In addition, we explored the relationship between the identified cognitive subtypes, and their demographical and neurobiological characteristics.
We performed LCA based on neuropsychological test results of 938 consecutive probable patients with AD dementia using Mini-Mental State Examination as the covariate. Subsequently, we performed multinomial logistic regression analysis with cluster membership as dependent variable and dichotomised demographics, APOE genotype, cerebrospinal fluid biomarkers and MRI characteristics as independent variables.
LCA revealed eight clusters characterised by distinct cognitive profile and disease severity. Memory-impaired clusters-mild-memory (MILD-MEM) and moderate-memory (MOD-MEM)-included 43% of patients. Memory-spared clusters mild-visuospatial-language (MILD-VILA), mild-executive (MILD-EXE) and moderate-visuospatial (MOD-VISP) -included 29% of patients. Memory-indifferent clusters mild-diffuse (MILD-DIFF), moderate-language (MOD-LAN) and severe-diffuse (SEV-DIFF) -included 28% of patients. Cognitive clusters were associated with distinct demographical and neurobiological characteristics. In particular, the memory-spared MOD-VISP cluster was associated with younger age, APOE e4 negative genotype and prominent atrophy of the posterior cortex.
Using LCA, we identified eight distinct cognitive subtypes in a large sample of patients with AD dementia. Cognitive clusters were associated with distinct demographical and neurobiological characteristics.
阿尔茨海默病(AD)是一种异质性疾病,其潜在的神经病理学仍然尚未完全理解。为了更好地理解这种异质性,我们旨在使用潜在类别分析(LCA)在大量 AD 痴呆患者中识别认知亚型。此外,我们还探讨了所识别的认知亚型与人口统计学和神经生物学特征之间的关系。
我们对 938 例连续的 AD 痴呆患者进行了基于神经心理学测试结果的 LCA,以简易精神状态检查(Mini-Mental State Examination)为协变量。随后,我们以聚类成员身份为因变量,以二分类的人口统计学数据、APOE 基因型、脑脊液生物标志物和 MRI 特征为自变量,进行了多项逻辑回归分析。
LCA 揭示了八个以不同认知特征和疾病严重程度为特征的聚类。以记忆受损为特征的聚类,包括轻度记忆(MILD-MEM)和中度记忆(MOD-MEM),占 43%的患者。以记忆保留为特征的聚类,包括轻度视空间语言(MILD-VILA)、轻度执行功能(MILD-EXE)和中度视空间(MOD-VISP),占 29%的患者。以记忆无关为特征的聚类,包括轻度弥漫性(MILD-DIFF)、中度语言(MOD-LAN)和严重弥漫性(SEV-DIFF),占 28%的患者。认知聚类与不同的人口统计学和神经生物学特征相关。特别是,以记忆保留为特征的 MOD-VISP 聚类与年龄较小、APOE e4 阴性基因型和后皮质明显萎缩有关。
使用 LCA,我们在大量 AD 痴呆患者中识别出了八个不同的认知亚型。认知聚类与不同的人口统计学和神经生物学特征相关。