Suppr超能文献

基于模型的调整的统计基础。

Statistical foundations for model-based adjustments.

机构信息

Department of Epidemiology and Department of Statistics, University of California, Los Angeles, California 90095-1772; email:

出版信息

Annu Rev Public Health. 2015 Mar 18;36:89-108. doi: 10.1146/annurev-publhealth-031914-122559.

Abstract

Most epidemiology textbooks that discuss models are vague on details of model selection. This lack of detail may be understandable since selection should be strongly influenced by features of the particular study, including contextual (prior) information about covariates that may confound, modify, or mediate the effect under study. It is thus important that authors document their modeling goals and strategies and understand the contextual interpretation of model parameters and model selection criteria. To illustrate this point, we review several established strategies for selecting model covariates, describe their shortcomings, and point to refinements, assuming that the main goal is to derive the most accurate effect estimates obtainable from the data and available resources. This goal shifts the focus to prediction of exposure or potential outcomes (or both) to adjust for confounding; it thus differs from the goal of ordinary statistical modeling, which is to passively predict outcomes. Nonetheless, methods and software for passive prediction can be used for causal inference as well, provided that the target parameters are shifted appropriately.

摘要

大多数讨论模型的流行病学教材都没有详细说明模型选择的细节。这种不详细的情况可能是可以理解的,因为选择应该受到特定研究的特征的强烈影响,包括关于可能混淆、改变或调节研究中效应的协变量的背景(先验)信息。因此,作者记录他们的建模目标和策略并理解模型参数和模型选择标准的上下文解释非常重要。为了说明这一点,我们回顾了几种用于选择模型协变量的既定策略,描述了它们的缺点,并指出了改进方法,假设主要目标是从数据和可用资源中得出最准确的可获得效应估计值。这一目标将重点转移到预测暴露或潜在结果(或两者)以调整混杂因素;因此,它与普通统计建模的目标不同,普通统计建模的目标是被动地预测结果。尽管如此,用于因果推理的被动预测方法和软件也可以使用,前提是目标参数被适当地转换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验