Suppr超能文献

不同展弦比旋转机翼的功率降低与失速延迟的径向极限

Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

作者信息

Kruyt Jan W, van Heijst GertJan F, Altshuler Douglas L, Lentink David

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands.

Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0051.

Abstract

Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack.

摘要

飞机和直升机采用大展弦比机翼来降低飞行所需功率,但必须在小攻角下运行以防止气流分离和失速。能够进行缓慢持续飞行的动物,如蜂鸟,具有小展弦比机翼,并以大攻角拍打翅膀而不会失速。相反,它们会在机翼前缘产生一个附着涡,从而提高升力。先前的研究表明,通过以相同攻角旋转动物翅膀可以重现这种涡和高升力。拍打和旋转的动物翅膀是如何延迟失速并降低功率的呢?据推测,失速延迟源于肩关节与翼尖之间的径向距离较短(以弦长衡量)。这种机翼长度的无量纲度量代表了在旋转和拍打翅膀的边界层中惯性力与旋转加速度的相对大小。在这里,我们针对一系列代表动物和飞机机翼的展弦比表明,旋转机翼上的前缘涡附着情况由相对于旋转中心定义的机翼展弦比决定。在大攻角下,当局部半径小于四个弦长时,涡会保持附着,而在大展弦比机翼上会在外侧分离。这种径向失速极限解释了为什么在小攻角下,旋转的大展弦比机翼(直升机的)比小展弦比机翼(蜂鸟的)需要的功率更少,而在大攻角下情况则相反。

相似文献

1
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
J R Soc Interface. 2015 Apr 6;12(105). doi: 10.1098/rsif.2015.0051.
2
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors.
J R Soc Interface. 2014 Oct 6;11(99). doi: 10.1098/rsif.2014.0585.
3
On the lift-optimal aspect ratio of a revolving wing at low Reynolds number.
J R Soc Interface. 2018 Jun;15(143). doi: 10.1098/rsif.2017.0933.
6
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Bioinspir Biomim. 2015 Oct 9;10(5):056020. doi: 10.1088/1748-3190/10/5/056020.
7
The aerodynamics of revolving wings I. Model hawkmoth wings.
J Exp Biol. 2002 Jun;205(Pt 11):1547-64. doi: 10.1242/jeb.205.11.1547.
8
Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.
Bioinspir Biomim. 2017 Mar 6;12(2):026010. doi: 10.1088/1748-3190/aa5c9e.
10
Aspect ratio effects on revolving wings with Rossby number consideration.
Bioinspir Biomim. 2016 Sep 9;11(5):056013. doi: 10.1088/1748-3190/11/5/056013.

引用本文的文献

1
Insect wing flexibility improves the aerodynamic performance of small revolving wings.
iScience. 2025 Feb 15;28(3):112035. doi: 10.1016/j.isci.2025.112035. eCollection 2025 Mar 21.
2
A simple model of wake capture aerodynamics.
J R Soc Interface. 2023 Sep;20(206):20230282. doi: 10.1098/rsif.2023.0282. Epub 2023 Sep 27.
3
Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping.
Biomimetics (Basel). 2023 May 23;8(2):216. doi: 10.3390/biomimetics8020216.
4
The Aerodynamic Effect of an Alula-like Vortex Generator on a Revolving Wing.
Biomimetics (Basel). 2022 Sep 10;7(3):128. doi: 10.3390/biomimetics7030128.
5
Dynamic experimental rigs for investigation of insect wing aerodynamics.
J R Soc Interface. 2022 Jun;19(191):20210909. doi: 10.1098/rsif.2021.0909. Epub 2022 Jun 1.
6
Wing Planform Effect on the Aerodynamics of Insect Wings.
Insects. 2022 May 13;13(5):459. doi: 10.3390/insects13050459.
7
Scalability of resonant motor-driven flapping wing propulsion systems.
R Soc Open Sci. 2021 Sep 22;8(9):210452. doi: 10.1098/rsos.210452. eCollection 2021 Sep.
8
The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency.
J R Soc Interface. 2021 Jul;18(180):20210236. doi: 10.1098/rsif.2021.0236. Epub 2021 Jul 7.
9
Range of motion in the avian wing is strongly associated with flight behavior and body mass.
Sci Adv. 2019 Oct 23;5(10):eaaw6670. doi: 10.1126/sciadv.aaw6670. eCollection 2019 Oct.
10
The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size.
R Soc Open Sci. 2018 Jul 11;5(7):172197. doi: 10.1098/rsos.172197. eCollection 2018 Jul.

本文引用的文献

1
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors.
J R Soc Interface. 2014 Oct 6;11(99). doi: 10.1098/rsif.2014.0585.
2
Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
J R Soc Interface. 2014 Sep 6;11(98):20140541. doi: 10.1098/rsif.2014.0541.
3
Molecular phylogenetics and the diversification of hummingbirds.
Curr Biol. 2014 Apr 14;24(8):910-6. doi: 10.1016/j.cub.2014.03.016. Epub 2014 Apr 3.
4
The aerodynamic forces and pressure distribution of a revolving pigeon wing.
Exp Fluids. 2009 May;46(5):991-1003. doi: 10.1007/s00348-008-0596-z.
5
Leading edge vortex in a slow-flying passerine.
Biol Lett. 2012 Aug 23;8(4):554-7. doi: 10.1098/rsbl.2012.0130. Epub 2012 Mar 14.
6
Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.
J Exp Biol. 2011 Jun 1;214(Pt 11):1867-73. doi: 10.1242/jeb.051342.
7
Lift production in the hovering hummingbird.
Proc Biol Sci. 2009 Nov 7;276(1674):3747-52. doi: 10.1098/rspb.2009.1003. Epub 2009 Aug 5.
8
Rotational accelerations stabilize leading edge vortices on revolving fly wings.
J Exp Biol. 2009 Aug;212(Pt 16):2705-19. doi: 10.1242/jeb.022269.
9
Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
J Exp Biol. 2009 Aug;212(Pt 16):2691-704. doi: 10.1242/jeb.022251.
10
Leading-edge vortices elevate lift of autorotating plant seeds.
Science. 2009 Jun 12;324(5933):1438-40. doi: 10.1126/science.1174196.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验