Suppr超能文献

兴奋性毒性中的线粒体碎片化需要ROCK激活。

Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

作者信息

Martorell-Riera Alejandro, Segarra-Mondejar Marc, Reina Manuel, Martínez-Estrada Ofelia M, Soriano Francesc X

机构信息

a Department of Cell Biology and CELLTEC-UB; Faculty of Biology ; University of Barcelona ; Barcelona , Spain.

出版信息

Cell Cycle. 2015;14(9):1365-9. doi: 10.1080/15384101.2015.1022698.

Abstract

Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.

摘要

线粒体形态通过调节线粒体功能的裂变和融合过程不断变化,因此在细胞内稳态中发挥着重要作用。细胞死亡进程与线粒体裂变有关。裂变主要由细胞质中的动力相关蛋白1(Drp1)介导,它通过不同的翻译后修饰被激活并募集到线粒体以发挥其功能。我们的研究和其他研究表明,在兴奋性毒性损伤的早期,Drp1必须被亚硝基化才能介导神经元中的线粒体碎片化。尽管如此,线粒体裂变是一个多步骤过程,其中丝状肌动蛋白的组装/拆卸和肌球蛋白介导的线粒体收缩起着重要作用。在这里,我们确定,除了一氧化氮的产生外,兴奋性毒性诱导的线粒体碎片化还需要激活肌动球蛋白调节因子ROCK。虽然ROCK1已被证明可磷酸化并激活Drp1,但在原代皮质神经元中使用Drp1的磷酸化突变体形式进行的实验表明,在兴奋性毒性条件下,ROCK并不直接作用于Drp1来介导裂变,而是可能作用于肌动球蛋白复合体。因此,这些数据表明,与那些靶向Drp1的信号通路相比,有更广泛的信号通路适合被抑制,以防止线粒体碎片化作为一种治疗选择。

相似文献

1
Mitochondrial fragmentation in excitotoxicity requires ROCK activation.
Cell Cycle. 2015;14(9):1365-9. doi: 10.1080/15384101.2015.1022698.
2
Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis.
Biochim Biophys Acta. 2016 Nov;1863(11):2820-2834. doi: 10.1016/j.bbamcr.2016.09.003. Epub 2016 Sep 4.
3
RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes.
Cell Signal. 2018 Oct;50:48-57. doi: 10.1016/j.cellsig.2018.06.012. Epub 2018 Jun 25.
6
CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death.
Hum Mol Genet. 2015 Aug 15;24(16):4573-83. doi: 10.1093/hmg/ddv188. Epub 2015 May 22.

引用本文的文献

1
Rock inhibitors in Alzheimer's disease.
Front Aging. 2025 Mar 20;6:1547883. doi: 10.3389/fragi.2025.1547883. eCollection 2025.
2
Synaptic Activity Regulates Mitochondrial Iron Metabolism to Enhance Neuronal Bioenergetics.
Int J Mol Sci. 2023 Jan 4;24(2):922. doi: 10.3390/ijms24020922.
5
RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes.
Cell Signal. 2018 Oct;50:48-57. doi: 10.1016/j.cellsig.2018.06.012. Epub 2018 Jun 25.
6
Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth.
EMBO J. 2018 May 2;37(9). doi: 10.15252/embj.201797368. Epub 2018 Apr 3.

本文引用的文献

1
Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission.
J Cell Biol. 2015 Jan 5;208(1):109-23. doi: 10.1083/jcb.201404050. Epub 2014 Dec 29.
2
Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death.
EMBO J. 2014 Oct 16;33(20):2388-407. doi: 10.15252/embj.201488327. Epub 2014 Aug 21.
3
A role for myosin II in mammalian mitochondrial fission.
Curr Biol. 2014 Feb 17;24(4):409-14. doi: 10.1016/j.cub.2013.12.032. Epub 2014 Jan 30.
4
Actin dynamics, architecture, and mechanics in cell motility.
Physiol Rev. 2014 Jan;94(1):235-63. doi: 10.1152/physrev.00018.2013.
5
Rho-associated coiled-coil kinase (ROCK) signaling and disease.
Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):301-16. doi: 10.3109/10409238.2013.786671. Epub 2013 Apr 19.
6
An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2.
Science. 2013 Jan 25;339(6118):464-7. doi: 10.1126/science.1228360.
7
Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission.
Mol Biol Cell. 2013 Mar;24(5):659-67. doi: 10.1091/mbc.E12-10-0721. Epub 2013 Jan 2.
8
GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress.
PLoS One. 2012;7(11):e49112. doi: 10.1371/journal.pone.0049112. Epub 2012 Nov 20.
9
The intracellular redox state is a core determinant of mitochondrial fusion.
EMBO Rep. 2012 Oct;13(10):909-15. doi: 10.1038/embor.2012.128. Epub 2012 Sep 4.
10
Mitochondrial fission, fusion, and stress.
Science. 2012 Aug 31;337(6098):1062-5. doi: 10.1126/science.1219855.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验