Suppr超能文献

Effect of sodium vanadate on deoxyribonucleic acid and protein syntheses in cultured rat calvariae.

作者信息

Canalis E

出版信息

Endocrinology. 1985 Mar;116(3):855-62. doi: 10.1210/endo-116-3-855.

Abstract

Sodium vanadate, an agent known to have multiple cellular actions, was studied for its effects on aspects of bone formation in cultures of 21-day-old fetal rat calvariae. Vanadate (0.1-10 microM) stimulated the incorporation of [3H] thymidine into acid-insoluble residues (DNA); the effect appeared after 3 h and was sustained for 96 h. Vanadate increased the bone DNA content and mitotic index. Treatment with vanadate at 10 microM for 24 h or at 0.3-1 microM for 96 h increased the incorporation of [3H]proline into collagenase-digestible protein (CDP), but the effect was not specific for collagen; vanadate also increased the labeling of noncollagen protein (NCP). Vanadate increased the incorporation of [3H]proline into type I collagen without affecting other collagen types. Vanadate (100 microM) caused a marked and irreversible inhibitory effect on the labeling of DNA, CDP, and NCP. Treatment with vanadate at multiple doses for 3-96 h did not stimulate alkaline phosphatase activity, but this enzyme was inhibited in bones exposed to 1 mM vanadate for 24 h or 10 microM vanadate for 96 h. The stimulatory effect on DNA labeling was primarily observed in the periosteum, while that on CDP labeling was seen only in the periosteum-free bone. These studies indicate that sodium vanadate stimulates bone DNA, collagen, and NCP syntheses in vitro, although high doses of vanadate have an irreversible inhibitory effect.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验