Suppr超能文献

二氧化钒纳米涂层通过中断线粒体电子传递链诱导肿瘤细胞死亡。

Vanadium Dioxide Nanocoating Induces Tumor Cell Death through Mitochondrial Electron Transport Chain Interruption.

作者信息

Li Jinhua, Jiang Meng, Zhou Huaijuan, Jin Ping, Cheung Kenneth M C, Chu Paul K, Yeung Kelvin W K

机构信息

Department of Orthopaedics and Traumatology Li Ka Shing Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong 999077 China.

Department of Physics and Department of Materials Science and Engineering City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong 999077 China.

出版信息

Glob Chall. 2018 Dec 3;3(3):1800058. doi: 10.1002/gch2.201800058. eCollection 2019 Mar.

Abstract

A biomaterials surface enabling the induction of tumor cell death is particularly desirable for implantable biomedical devices that directly contact tumor tissues. However, this specific antitumor feature is rarely found. Consequently, an antitumor-cell nanocoating comprised of vanadium dioxide (VO) prepared by customized reactive magnetron sputtering has been proposed, and its antitumor-growth capability has been demonstrated using human cholangiocarcinoma cells. The results reveal that the VO nanocoating is able to interrupt the mitochondrial electron transport chain and then elevate the intracellular reactive oxygen species levels, leading to the collapse of the mitochondrial membrane potential and the destruction of cell redox homeostasis. Indeed, this chain reaction can effectively trigger oxidative damage in the cholangiocarcinoma cells. Additionally, this study has provided new insights into designing a tumor-cell-inhibited biomaterial surface, which is modulated by the mechanism of mitochondria-targeting tumor cell death.

摘要

对于直接接触肿瘤组织的可植入生物医学设备而言,能够诱导肿瘤细胞死亡的生物材料表面是尤为可取的。然而,这种特殊的抗肿瘤特性却很少见。因此,有人提出了一种通过定制反应磁控溅射制备的由二氧化钒(VO)组成的抗肿瘤细胞纳米涂层,并使用人胆管癌细胞证明了其抗肿瘤生长能力。结果表明,VO纳米涂层能够中断线粒体电子传递链,进而提高细胞内活性氧水平,导致线粒体膜电位崩溃和细胞氧化还原稳态破坏。事实上,这种连锁反应能够有效引发胆管癌细胞中的氧化损伤。此外,本研究为设计受线粒体靶向肿瘤细胞死亡机制调节的抑制肿瘤细胞的生物材料表面提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85da/6436600/afeb5f5cc8e1/GCH2-3-1800058-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验