Suppr超能文献

高寒湿地中的甲烷动态:基于实地的产甲烷和甲烷氧化微生物群落研究。

Methane dynamics in an alpine fen: a field-based study on methanogenic and methanotrophic microbial communities.

作者信息

Franchini Alessandro G, Henneberger Ruth, Aeppli Meret, Zeyer Josef

机构信息

Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.

Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland

出版信息

FEMS Microbiol Ecol. 2015 Mar;91(3). doi: 10.1093/femsec/fiu032. Epub 2014 Dec 23.

Abstract

Wetlands are important sources of the greenhouse gas methane (CH4). We provide an in situ study of CH4 dynamics in the permanently submerged soil of a Swiss alpine fen. Physico-chemical pore water analyses were combined with structural and microbiological analyses of soil cores at high vertical resolution down to 50 cm depth. Methanotrophs and methanogens were active throughout the depth profile, and highest abundance of active methanotrophs and methanogens [6.1 × 10(5) and 1.1 × 10(7) pmoA and mcrA transcripts (g soil)(-1), respectively] was detected in the uppermost 2 cm of the soil. Active methanotrophic communities in the near-surface zone, dominated by viable mosses, varied from the communities in the deeper zones, but further changes with depth were not pronounced. Apart from a distinct active methanogenic community in the uppermost sample, a decrease of acetoclastic Methanosaetaceae with depth was observed in concomitance with decreasing root surface area. Overall, root surface area correlated with mcrA transcript abundance and CH4 pore water concentrations, which peaked (137.1 μM) at 10 to 15 cm depth. Our results suggest that stimulation of methanogenesis by root exudates of vascular plants had a stronger influence on CH4 dynamics than stimulation of CH4 oxidation by O2 input.

摘要

湿地是温室气体甲烷(CH4)的重要来源。我们对瑞士阿尔卑斯山沼泽地永久淹没土壤中的CH4动态进行了原位研究。将物理化学孔隙水分析与土壤岩心的结构和微生物分析相结合,以高垂直分辨率对深度达50厘米的土壤进行分析。甲烷氧化菌和产甲烷菌在整个深度剖面上都有活性,在土壤最上层2厘米处检测到活性甲烷氧化菌和产甲烷菌的最高丰度[分别为6.1×10(5)和1.1×10(7)个pmoA和mcrA转录本(克土壤)(-1)]。近地表区域以活苔藓为主导的活性甲烷氧化菌群落与较深区域的群落不同,但随深度的进一步变化并不明显。除了最上层样本中有一个独特的活性产甲烷菌群落外,还观察到随着深度增加,乙酸营养型甲烷八叠球菌科减少,同时根表面积也减少。总体而言,根表面积与mcrA转录本丰度和CH4孔隙水浓度相关,在10至15厘米深度处达到峰值(137.1μM)。我们的结果表明,维管植物根系分泌物对甲烷生成的刺激对CH4动态的影响比氧气输入对CH4氧化的刺激更强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验