Suppr超能文献

氧气在刺激湿地甲烷产生中的作用。

The role of oxygen in stimulating methane production in wetlands.

作者信息

Wilmoth Jared L, Schaefer Jeffra K, Schlesinger Danielle R, Roth Spencer W, Hatcher Patrick G, Shoemaker Julie K, Zhang Xinning

机构信息

High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.

Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA.

出版信息

Glob Chang Biol. 2021 Nov;27(22):5831-5847. doi: 10.1111/gcb.15831. Epub 2021 Aug 18.

Abstract

Methane (CH ), a potent greenhouse gas, is the second most important greenhouse gas contributor to climate change after carbon dioxide (CO ). The biological emissions of CH from wetlands are a major uncertainty in CH budgets. Microbial methanogenesis by Archaea is an anaerobic process accounting for most biological CH production in nature, yet recent observations indicate that large emissions can originate from oxygenated or frequently oxygenated wetland soil layers. To determine how oxygen (O ) can stimulate CH emissions, we used incubations of Sphagnum peat to demonstrate that the temporary exposure of peat to O can increase CH yields up to 2000-fold during subsequent anoxic conditions relative to peat without O exposure. Geochemical (including ion cyclotron resonance mass spectrometry, X-ray absorbance spectroscopy) and microbiome (16S rDNA amplicons, metagenomics) analyses of peat showed that higher CH yields of redox-oscillated peat were due to functional shifts in the peat microbiome arising during redox oscillation that enhanced peat carbon (C) degradation. Novosphingobium species with O -dependent aromatic oxygenase genes increased greatly in relative abundance during the oxygenation period in redox-oscillated peat compared to anoxic controls. Acidobacteria species were particularly important for anaerobic processing of peat C, including in the production of methanogenic substrates H and CO . Higher CO production during the anoxic phase of redox-oscillated peat stimulated hydrogenotrophic CH production by Methanobacterium species. The persistence of reduced iron (Fe(II)) during prolonged oxygenation in redox-oscillated peat may further enhance C degradation through abiotic mechanisms (e.g., Fenton reactions). The results indicate that specific functional shifts in the peat microbiome underlie O enhancement of CH production in acidic, Sphagnum-rich wetland soils. They also imply that understanding microbial dynamics spanning temporal and spatial redox transitions in peatlands is critical for constraining CH budgets; predicting feedbacks between climate change, hydrologic variability, and wetland CH emissions; and guiding wetland C management strategies.

摘要

甲烷(CH₄)是一种强效温室气体,是仅次于二氧化碳(CO₂)的对气候变化影响第二大的温室气体。湿地中CH₄的生物排放是CH₄收支的一个主要不确定因素。古菌进行的微生物产甲烷作用是一个厌氧过程,占自然界中大多数生物CH₄产生量,但最近的观察表明,大量排放可能源自含氧或频繁含氧的湿地土壤层。为了确定氧气(O₂)如何刺激CH₄排放,我们利用泥炭藓泥炭进行培养实验,结果表明,相对于未接触O₂的泥炭,泥炭在随后缺氧条件下临时接触O₂可使CH₄产量增加高达2000倍。对泥炭进行的地球化学分析(包括离子回旋共振质谱、X射线吸收光谱)和微生物组分析(16S rDNA扩增子、宏基因组学)表明,氧化还原振荡泥炭的CH₄产量较高是由于氧化还原振荡期间泥炭微生物组的功能转变增强了泥炭碳(C)的降解。与缺氧对照相比,在氧化还原振荡泥炭的氧化期,具有O₂依赖性芳香加氧酶基因的新鞘氨醇菌属相对丰度大幅增加。酸杆菌属对于泥炭C的厌氧处理尤为重要,包括在产甲烷底物H₂和CO₂的产生过程中。氧化还原振荡泥炭缺氧阶段较高的CO₂产生量刺激了甲烷杆菌属进行氢营养型CH₄产生。在氧化还原振荡泥炭长时间氧化过程中还原态铁(Fe(II))的持续存在可能通过非生物机制(如芬顿反应)进一步增强C的降解。结果表明,泥炭微生物组的特定功能转变是酸性、富含泥炭藓的湿地土壤中O₂促进CH₄产生的基础。它们还意味着,了解泥炭地中跨越时间和空间氧化还原转变的微生物动态对于限制CH₄收支、预测气候变化、水文变异性和湿地CH₄排放之间的反馈以及指导湿地C管理策略至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验