Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Lab Chip. 2015 May 7;15(9):2009-17. doi: 10.1039/c5lc00026b.
Microfluidic channels are typically fabricated in polydimethylsiloxane (PDMS) using soft lithography and sealed against a support substrate using various irreversible/reversible techniques-the most widely used method is the irreversible bonding of PDMS to glass using oxygen plasma. These techniques are limited in their ability to seal channels against rough, uneven, and/or three-dimensional substrates. This manuscript describes the design and fabrication of soft microfluidic systems from combinations of silicone elastomers that can be reversibly sealed against an array of materials of various topographies/geometries using compression. These soft systems have channels with cross-sectional dimensions that can be decreased, reversibly, by hundreds of microns using compressive stress, and the ability to interface with virtually any support substrate. These capabilities go beyond that achievable with devices fabricated in PDMS alone and enable the integration of microfluidic functionality directly with rough and/or 3D surfaces, providing new opportunities in solution processing useful to, for example, materials science and the analytical/forensic sciences.
微流道通常采用软光刻技术在聚二甲基硅氧烷(PDMS)中制作,并使用各种不可逆/可逆技术将其密封在支撑基底上——最广泛使用的方法是使用氧等离子体将 PDMS 不可逆地键合到玻璃上。这些技术在密封通道方面的能力有限,无法应对粗糙、不均匀和/或三维基底。本文档介绍了使用压缩技术从硅酮弹性体组合设计和制造软微流系统的方法,这些系统可以可逆地密封在各种形貌/几何形状的材料阵列上。这些软系统的通道具有横截面尺寸,可以使用压缩应力将其可逆地减小数百微米,并且能够与几乎任何支撑基底进行接口。这些功能超出了仅使用 PDMS 制造的设备所能实现的功能,使微流功能可以直接与粗糙和/或 3D 表面集成,为例如材料科学和分析/法医学中的溶液处理提供了新的机会。