Fan Ludi, Schaubel Douglas E
Eli Lilly and Company, 893 S Delaware St., Indianapolis, IN, 46285, USA.
Department of Biostatistics, University of Michigan, 1415 Washington Hts., Ann Arbor, MI, 48109-2029, USA.
Lifetime Data Anal. 2016 Jan;22(1):17-37. doi: 10.1007/s10985-015-9324-1. Epub 2015 Mar 20.
The competing risks data structure arises frequently in clinical and epidemiologic studies. In such settings, the cumulative incidence function is often used to describe the ultimate occurrence of a particular cause of interest. If the objective of the analysis is to compare subgroups of patients with respect to cumulative incidence, imbalance with respect to group-specific covariate distributions must generally be factored out, particularly in observational studies. This report proposes a measure to contrast center- (or, more generally group-) specific cumulative incidence functions (CIF). One such application involves evaluating organ procurement organizations with respect to the cumulative incidence of kidney transplantation. In this case, the competing risks include (i) death on the wait-list and (ii) removal from the wait-list. The proposed method assumes proportional cause-specific hazards, which are estimated through Cox models stratified by center. The proposed center effect measure compares the average CIF for a given center to the average CIF that would have resulted if that particular center had covariate pattern-specific cumulative incidence equal to that of the national average. We apply the proposed methods to data obtained from a national organ transplant registry.
竞争风险数据结构在临床和流行病学研究中经常出现。在这种情况下,累积发病率函数通常用于描述特定感兴趣原因的最终发生情况。如果分析的目的是比较患者亚组的累积发病率,通常必须排除组特异性协变量分布方面的不平衡,特别是在观察性研究中。本报告提出了一种用于对比中心(或更一般地说,组)特异性累积发病率函数(CIF)的方法。这样的一个应用涉及评估器官采购组织在肾脏移植累积发病率方面的情况。在这种情况下,竞争风险包括:(i)等待名单上的死亡和(ii)从等待名单上移除。所提出的方法假定了比例病因特异性风险,通过按中心分层的Cox模型进行估计。所提出的中心效应度量将给定中心的平均CIF与如果该特定中心具有与全国平均水平相等的协变量模式特异性累积发病率时所得到的平均CIF进行比较。我们将所提出的方法应用于从国家器官移植登记处获得的数据。