Suppr超能文献

评估竞争风险环境下的中心绩效:应用于等待名单上的终末期肾病患者的结局

Evaluating center performance in the competing risks setting: Application to outcomes of wait-listed end-stage renal disease patients.

作者信息

Dharmarajan Sai H, Schaubel Douglas E, Saran Rajiv

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.

Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, U.S.A.

出版信息

Biometrics. 2018 Mar;74(1):289-299. doi: 10.1111/biom.12739. Epub 2017 Jul 6.

Abstract

It is often of interest to compare centers or healthcare providers on quality of care delivered. We consider the setting where evaluation of center performance on multiple competing events is of interest. We propose estimating center effects through cause-specific proportional hazards frailty models that allow correlation among a center's cause-specific effects. Estimation of our model proceeds via penalized partial likelihood and is implemented in R. To evaluate center performance, we also propose a directly standardized excess cumulative incidence (ECI) measure. Therefore, based on our proposed methods, practitioners can evaluate centers either through the cause-specific hazards or the cumulative incidence functions. We demonstrate, through simulations, the advantages of the proposed methods to detect outlying centers, by comparing the proposed methods and existing methods which assume uncorrelated random center effects. In addition, we develop a Correlation Score Test to test the null hypothesis that the competing event processes within a center are correlated. Using data from the Scientific Registry of Transplant Recipients, we apply our method to evaluate the performance of Organ Procurement Organizations on two competing risks: (i) receipt of a kidney transplant and (ii) death on the wait-list.

摘要

比较不同医疗中心或医疗服务提供者所提供的医疗质量往往很有意义。我们考虑这样一种情况,即对多个相互竞争事件的中心绩效评估很重要。我们建议通过特定病因的比例风险脆弱模型来估计中心效应,该模型允许中心特定病因效应之间存在相关性。我们模型的估计通过惩罚偏似然法进行,并在R语言中实现。为了评估中心绩效,我们还提出了一种直接标准化的超额累积发病率(ECI)指标。因此,基于我们提出的方法,从业者可以通过特定病因风险或累积发病率函数来评估医疗中心。通过模拟,我们比较了所提出的方法与假设随机中心效应不相关的现有方法,展示了所提方法在检测异常中心方面的优势。此外,我们开发了一种相关性得分检验,以检验一个中心内相互竞争事件过程相关的原假设。利用来自移植受者科学登记处的数据,我们应用我们的方法评估器官获取组织在两种相互竞争风险方面的绩效:(i)接受肾移植和(ii)在等待名单上死亡。

相似文献

2
Comparing center-specific cumulative incidence functions.
Lifetime Data Anal. 2016 Jan;22(1):17-37. doi: 10.1007/s10985-015-9324-1. Epub 2015 Mar 20.
6
Poor outcomes for children on the wait list at low-volume kidney transplant centers in the United States.
Pediatr Nephrol. 2017 Apr;32(4):669-678. doi: 10.1007/s00467-016-3519-x. Epub 2016 Oct 18.
9
Facility profiling under competing risks using multivariate prognostic scores: Application to kidneytransplant centers.
Stat Methods Med Res. 2022 Mar;31(3):563-575. doi: 10.1177/09622802211052873. Epub 2021 Dec 8.

引用本文的文献

1
Penalized survival models for the analysis of alternating recurrent event data.
Biometrics. 2020 Jun;76(2):448-459. doi: 10.1111/biom.13153. Epub 2019 Nov 11.

本文引用的文献

1
Score test for association between recurrent events and a terminal event.
Stat Med. 2016 Aug 15;35(18):3037-48. doi: 10.1002/sim.6913. Epub 2016 Feb 17.
2
Kidney.
Am J Transplant. 2016 Jan;16 Suppl 2(Suppl 2):11-46. doi: 10.1111/ajt.13666.
3
Comparing center-specific cumulative incidence functions.
Lifetime Data Anal. 2016 Jan;22(1):17-37. doi: 10.1007/s10985-015-9324-1. Epub 2015 Mar 20.
4
Evaluating hospital performance based on excess cause-specific incidence.
Stat Med. 2015 Apr 15;34(8):1334-50. doi: 10.1002/sim.6409. Epub 2015 Jan 15.
5
A Dirichlet process mixture model for survival outcome data: assessing nationwide kidney transplant centers.
Stat Med. 2015 Apr 15;34(8):1404-16. doi: 10.1002/sim.6438. Epub 2015 Jan 26.
6
On shrinkage and model extrapolation in the evaluation of clinical center performance.
Biostatistics. 2014 Oct;15(4):651-64. doi: 10.1093/biostatistics/kxu019. Epub 2014 May 8.
7
Analysis of clustered competing risks data using subdistribution hazard models with multivariate frailties.
Stat Methods Med Res. 2016 Dec;25(6):2488-2505. doi: 10.1177/0962280214526193. Epub 2014 Mar 11.
8
Methods for comparing center-specific survival outcomes using direct standardization.
Stat Med. 2014 May 30;33(12):2048-61. doi: 10.1002/sim.6089. Epub 2014 Jan 17.
9
Calibrated predictions for multivariate competing risks models.
Lifetime Data Anal. 2014 Apr;20(2):234-51. doi: 10.1007/s10985-013-9260-x. Epub 2013 May 31.
10
Between-within models for survival analysis.
Stat Med. 2013 Aug 15;32(18):3067-76. doi: 10.1002/sim.5767. Epub 2013 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验