Dharmarajan Sai H, Schaubel Douglas E, Saran Rajiv
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.
Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, U.S.A.
Biometrics. 2018 Mar;74(1):289-299. doi: 10.1111/biom.12739. Epub 2017 Jul 6.
It is often of interest to compare centers or healthcare providers on quality of care delivered. We consider the setting where evaluation of center performance on multiple competing events is of interest. We propose estimating center effects through cause-specific proportional hazards frailty models that allow correlation among a center's cause-specific effects. Estimation of our model proceeds via penalized partial likelihood and is implemented in R. To evaluate center performance, we also propose a directly standardized excess cumulative incidence (ECI) measure. Therefore, based on our proposed methods, practitioners can evaluate centers either through the cause-specific hazards or the cumulative incidence functions. We demonstrate, through simulations, the advantages of the proposed methods to detect outlying centers, by comparing the proposed methods and existing methods which assume uncorrelated random center effects. In addition, we develop a Correlation Score Test to test the null hypothesis that the competing event processes within a center are correlated. Using data from the Scientific Registry of Transplant Recipients, we apply our method to evaluate the performance of Organ Procurement Organizations on two competing risks: (i) receipt of a kidney transplant and (ii) death on the wait-list.
比较不同医疗中心或医疗服务提供者所提供的医疗质量往往很有意义。我们考虑这样一种情况,即对多个相互竞争事件的中心绩效评估很重要。我们建议通过特定病因的比例风险脆弱模型来估计中心效应,该模型允许中心特定病因效应之间存在相关性。我们模型的估计通过惩罚偏似然法进行,并在R语言中实现。为了评估中心绩效,我们还提出了一种直接标准化的超额累积发病率(ECI)指标。因此,基于我们提出的方法,从业者可以通过特定病因风险或累积发病率函数来评估医疗中心。通过模拟,我们比较了所提出的方法与假设随机中心效应不相关的现有方法,展示了所提方法在检测异常中心方面的优势。此外,我们开发了一种相关性得分检验,以检验一个中心内相互竞争事件过程相关的原假设。利用来自移植受者科学登记处的数据,我们应用我们的方法评估器官获取组织在两种相互竞争风险方面的绩效:(i)接受肾移植和(ii)在等待名单上死亡。