Lambert Paul C, Wilkes Sally R, Crowther Michael J
Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, U.K.
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Stat Med. 2017 Apr 30;36(9):1429-1446. doi: 10.1002/sim.7208. Epub 2016 Dec 22.
Competing risks arise with time-to-event data when individuals are at risk of more than one type of event and the occurrence of one event precludes the occurrence of all other events. A useful measure with competing risks is the cause-specific cumulative incidence function (CIF), which gives the probability of experiencing a particular event as a function of follow-up time, accounting for the fact that some individuals may have a competing event. When modelling the cause-specific CIF, the most common model is a semi-parametric proportional subhazards model. In this paper, we propose the use of flexible parametric survival models to directly model the cause-specific CIF where the effect of follow-up time is modelled using restricted cubic splines. The models provide smooth estimates of the cause-specific CIF with the important advantage that the approach is easily extended to model time-dependent effects. The models can be fitted using standard survival analysis tools by a combination of data expansion and introducing time-dependent weights. Various link functions are available that allow modelling on different scales and have proportional subhazards, proportional odds and relative absolute risks as particular cases. We conduct a simulation study to evaluate how well the spline functions approximate subhazard functions with complex shapes. The methods are illustrated using data from the European Blood and Marrow Transplantation Registry showing excellent agreement between parametric estimates of the cause-specific CIF and those obtained from a semi-parametric model. We also fit models relaxing the proportional subhazards assumption using alternative link functions and/or including time-dependent effects. Copyright © 2016 John Wiley & Sons, Ltd.
当个体面临不止一种类型的事件风险,且一个事件的发生排除了所有其他事件的发生时,竞争风险就会在生存时间数据中出现。竞争风险的一个有用度量是特定病因累积发病率函数(CIF),它给出了作为随访时间函数的经历特定事件的概率,同时考虑到一些个体可能会发生竞争事件这一事实。在对特定病因CIF进行建模时,最常用的模型是半参数比例子风险模型。在本文中,我们建议使用灵活的参数生存模型直接对特定病因CIF进行建模,其中随访时间的影响使用受限立方样条进行建模。这些模型提供了特定病因CIF的平滑估计,其重要优点是该方法易于扩展以对时间依赖效应进行建模。这些模型可以通过数据扩展和引入时间依赖权重的组合,使用标准生存分析工具进行拟合。有各种链接函数可供使用,它们允许在不同尺度上进行建模,并具有比例子风险、比例优势和相对绝对风险等特殊情况。我们进行了一项模拟研究,以评估样条函数对具有复杂形状的子风险函数的近似程度。使用来自欧洲血液和骨髓移植登记处的数据说明了这些方法,结果显示特定病因CIF的参数估计与从半参数模型获得的估计之间具有极好的一致性。我们还使用替代链接函数和/或包括时间依赖效应来拟合放宽比例子风险假设的模型。版权所有© 2016约翰威立父子有限公司。