Suppr超能文献

一种使用改进的自适应遗传算法评估胎儿健康状况的新型临床决策支持系统。

A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being.

作者信息

Ravindran Sindhu, Jambek Asral Bahari, Muthusamy Hariharan, Neoh Siew-Chin

机构信息

School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Campus Pauh Putra, 02600 Perlis, Malaysia.

School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), Campus Pauh Putra, 02600 Perlis, Malaysia.

出版信息

Comput Math Methods Med. 2015;2015:283532. doi: 10.1155/2015/283532. Epub 2015 Feb 22.

Abstract

A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.

摘要

本文提出了一种新型临床决策支持系统,该系统通过改进的自适应遗传算法(IAGA)和极限学习机(ELM),从胎心宫缩图(CTG)数据集中评估胎儿健康状况。IAGA采用一种新的缩放技术(称为西格玛缩放)来避免过早收敛,并应用带有掩码概念的自适应交叉和变异技术来增强种群多样性。此外,该搜索算法利用三种不同的适应度函数(两个单目标适应度函数和多目标适应度函数)来评估其性能。分类结果表明,使用IAGA通过最优特征子集可获得94%的良好分类准确率。此外,将分类结果与其他特征约简技术的结果进行比较,以证实其对全局最优的详尽搜索。此外,还使用了其他五个基准数据集来评估所提出的IAGA算法的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0450/4352501/5d7df15face0/CMMM2015-283532.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验