Suppr超能文献

具有凋亡调节潜能的微小RNA在慢性运动诱导的生理性肥大心脏中差异表达。

MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts.

作者信息

Ramasamy Subbiah, Velmurugan Ganesan, Shanmugha Rajan K, Ramprasath Tharmarajan, Kalpana Krishnan

机构信息

Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India.

Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.

出版信息

PLoS One. 2015 Mar 20;10(3):e0121401. doi: 10.1371/journal.pone.0121401. eCollection 2015.

Abstract

Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms.

摘要

生理性心脏肥大是一种适应性机制,在长期运动过程中诱发。由于它是可逆的且与心肌细胞死亡无关,因此被视为预防心脏功能障碍和衰竭的一种自然策略。然而,不同的研究揭示了微小RNA(miRNA)在病理性肥大中的重要性,它们在生理性肥大过程中的作用在很大程度上尚未被探索。因此,本研究旨在揭示生理性心脏肥大过程中miRNA的整体表达谱。连续八周的慢性游泳方案导致大鼠生理性肥大的诱导,组织病理学显示无组织损伤、凋亡或纤维化。随后,分离总RNA并进行小RNA测序。对小RNA读数的分析揭示了生理性肥大过程中大量miRNA的差异表达。通过qPCR验证了显著差异表达的miRNA的表达谱。通过miRanda、miRdB和TargetScan对靶基因进行计算机预测,随后的qPCR分析表明,包括miR-99b、miR-100、miR-19b、miR-10、miR-208a、miR-133、miR-191a、miR-22、miR-30e和miR-181a在内的miRNA靶向主要调节细胞增殖和细胞死亡的基因。基因本体论和通路映射表明,差异表达的miRNA及其靶基因主要通过PI3K/Akt/mTOR和MAPK信号通路映射到凋亡和细胞死亡通路。总之,我们的数据表明,这些具有凋亡调节潜力的miRNA的调节可能是通过控制纤维化、凋亡和细胞死亡机制来决定病理性或生理性肥大的主要关键因素之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ab/4368613/edf9fb735ea3/pone.0121401.g001.jpg

相似文献

2
Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.
Exp Cell Res. 2018 Apr 1;365(1):46-56. doi: 10.1016/j.yexcr.2018.02.016. Epub 2018 Feb 23.
3
MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways.
Biochim Biophys Acta. 2013 Jan;1832(1):1-10. doi: 10.1016/j.bbadis.2012.09.004. Epub 2012 Sep 20.
5
Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology.
J Mol Cell Cardiol. 2015 Apr;81:1-9. doi: 10.1016/j.yjmcc.2015.01.008. Epub 2015 Jan 26.
6
Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.
BMC Genomics. 2014 Nov 19;15(1):998. doi: 10.1186/1471-2164-15-998.
7
Differential microRNA expression profiles and bioinformatics analysis between young and aging spontaneously hypertensive rats.
Int J Mol Med. 2018 Mar;41(3):1584-1594. doi: 10.3892/ijmm.2018.3370. Epub 2018 Jan 9.
8
9
10
Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure.
Am J Physiol Heart Circ Physiol. 2015 Nov 15;309(10):H1629-41. doi: 10.1152/ajpheart.00941.2014. Epub 2015 Sep 25.

引用本文的文献

2
MicroRNAs regulating signaling pathways in cardiac fibrosis: potential role of the exercise training.
Am J Physiol Heart Circ Physiol. 2024 Mar 1;326(3):H497-H510. doi: 10.1152/ajpheart.00410.2023. Epub 2023 Dec 8.
3
PiRNA in Cardiovascular Disease: Focus on Cardiac Remodeling and Cardiac Protection.
J Cardiovasc Transl Res. 2023 Aug;16(4):768-777. doi: 10.1007/s12265-023-10353-1. Epub 2023 Jul 5.
4
Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope.
Sports Med Open. 2023 May 6;9(1):27. doi: 10.1186/s40798-023-00573-9.
5
Immunomodulatory activity of polysaccharides from by activating Akt/NF-κB signaling.
Chin Herb Med. 2021 Oct 7;14(1):90-96. doi: 10.1016/j.chmed.2021.10.003. eCollection 2022 Jan.
6
The Epigenetic Role of MiRNAs in Endocrine Crosstalk Between the Cardiovascular System and Adipose Tissue: A Bidirectional View.
Front Cell Dev Biol. 2022 Jul 4;10:910884. doi: 10.3389/fcell.2022.910884. eCollection 2022.
7
White tea modulates antioxidant defense of endurance-trained rats.
Curr Res Physiol. 2022 Jun 18;5:256-264. doi: 10.1016/j.crphys.2022.06.002. eCollection 2022.
9
MiR-410-3p facilitates Angiotensin II-induced cardiac hypertrophy by targeting Smad7.
Bioengineered. 2022 Jan;13(1):119-127. doi: 10.1080/21655979.2021.2009968.
10
miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition.
Am J Physiol Cell Physiol. 2021 Dec 1;321(6):C977-C991. doi: 10.1152/ajpcell.00190.2021. Epub 2021 Oct 27.

本文引用的文献

1
miR-191: an emerging player in disease biology.
Front Genet. 2014 Apr 23;5:99. doi: 10.3389/fgene.2014.00099. eCollection 2014.
2
An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy.
PLoS One. 2014 Apr 21;9(4):e93271. doi: 10.1371/journal.pone.0093271. eCollection 2014.
3
Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications.
Stem Cell Res. 2014 Mar;12(2):323-37. doi: 10.1016/j.scr.2013.11.008. Epub 2013 Nov 28.
5
MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.
Circ Res. 2013 Apr 26;112(9):1234-43. doi: 10.1161/CIRCRESAHA.112.300682. Epub 2013 Mar 22.
6
MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy.
PLoS One. 2013;8(1):e53950. doi: 10.1371/journal.pone.0053950. Epub 2013 Jan 9.
7
Molecular basis of physiological heart growth: fundamental concepts and new players.
Nat Rev Mol Cell Biol. 2013 Jan;14(1):38-48. doi: 10.1038/nrm3495.
8
miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data.
Nucleic Acids Res. 2013 Jan;41(2):727-37. doi: 10.1093/nar/gks1187. Epub 2012 Dec 4.
9
MicroRNA-181b regulates NF-κB-mediated vascular inflammation.
J Clin Invest. 2012 Jun;122(6):1973-90. doi: 10.1172/JCI61495. Epub 2012 May 24.
10
Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis.
Med Sci Sports Exerc. 2012 Aug;44(8):1453-62. doi: 10.1249/MSS.0b013e31824e8a36.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验