Suppr超能文献

运动促进组织再生:涉及的机制及治疗范围。

Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope.

作者信息

Liu Chang, Wu Xinying, Vulugundam Gururaja, Gokulnath Priyanka, Li Guoping, Xiao Junjie

机构信息

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.

Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.

出版信息

Sports Med Open. 2023 May 6;9(1):27. doi: 10.1186/s40798-023-00573-9.

Abstract

Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.

摘要

运动对全身具有公认的有益作用。先前的研究表明,运动可促进各器官的组织再生和修复。在本综述中,我们总结了运动对组织再生的主要影响,这些影响主要由骨骼肌、神经系统和血管系统中的干细胞和祖细胞介导。我们还详细讨论了运动诱导的干细胞激活在不同器官的病理条件和衰老过程中的保护作用。此外,我们描述了运动诱导组织再生所涉及的主要分子机制,包括生长因子、信号通路、氧化应激、代谢因子和非编码RNA的作用。我们还总结了针对运动诱导组织再生的关键信号通路和分子(如IGF1、PI3K和微小RNA)的治疗方法。总的来说,对运动诱导组织再生的全面理解将有助于发现新的药物靶点和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/003b/10164224/59cd5dfb8f93/40798_2023_573_Fig1_HTML.jpg

相似文献

1
Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope.
Sports Med Open. 2023 May 6;9(1):27. doi: 10.1186/s40798-023-00573-9.
2
Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration.
Cells. 2019 Feb 20;8(2):183. doi: 10.3390/cells8020183.
3
Exercise and Ischemia-Activated Pathways in Limb Muscle Angiogenesis and Vascular Regeneration.
Methodist Debakey Cardiovasc J. 2023 Nov 16;19(5):58-68. doi: 10.14797/mdcvj.1304. eCollection 2023.
4
microRNA-501 controls myogenin/CD74 myogenic progenitor cells during muscle regeneration.
Mol Metab. 2023 May;71:101704. doi: 10.1016/j.molmet.2023.101704. Epub 2023 Mar 11.
5
Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases.
Oncotarget. 2018 Mar 30;9(24):17220-17237. doi: 10.18632/oncotarget.24991.
6
Promoting tissue regeneration by modulating the immune system.
Acta Biomater. 2017 Apr 15;53:13-28. doi: 10.1016/j.actbio.2017.01.056. Epub 2017 Jan 22.
8
9
Keeping the Heart Healthy: The Role of Exercise in Cardiac Repair and Regeneration.
Antioxid Redox Signal. 2023 Dec;39(16-18):1088-1107. doi: 10.1089/ars.2023.0301. Epub 2023 Jun 21.

引用本文的文献

2
In Vivo Reprogramming of Tissue-Derived Extracellular Vesicles for Treating Chronic Tissue Injury Through Metabolic Engineering.
Adv Sci (Weinh). 2025 Jun;12(21):e2415556. doi: 10.1002/advs.202415556. Epub 2025 Mar 31.
4
The healing effects of moderate exercise on acetic acid-induced gastric ulcer in male rats.
Gastroenterol Hepatol Bed Bench. 2024;17(3):313-319. doi: 10.22037/ghfbb.v17i3.2948.
5
Sex differences in the associations between right heart structure and peak exercise capacity parameters in amateur cyclists.
Front Physiol. 2024 Jul 29;15:1427101. doi: 10.3389/fphys.2024.1427101. eCollection 2024.
6
DDAH1 Protects against Cardiotoxin-Induced Muscle Injury and Regeneration.
Antioxidants (Basel). 2023 Sep 13;12(9):1754. doi: 10.3390/antiox12091754.

本文引用的文献

1
Exercise Training after Myocardial Infarction Attenuates Dysfunctional Ventricular Remodeling and Promotes Cardiac Recovery.
Rev Cardiovasc Med. 2022 Apr 19;23(4):148. doi: 10.31083/j.rcm2304148. eCollection 2022 Apr.
2
Exercise sustains the hallmarks of health.
J Sport Health Sci. 2023 Jan;12(1):8-35. doi: 10.1016/j.jshs.2022.10.003. Epub 2022 Oct 29.
4
Young bone marrow transplantation prevents aging-related muscle atrophy in a senescence-accelerated mouse prone 10 model.
J Cachexia Sarcopenia Muscle. 2022 Dec;13(6):3078-3090. doi: 10.1002/jcsm.13058. Epub 2022 Sep 4.
5
Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy.
J Nanobiotechnology. 2022 Jun 27;20(1):304. doi: 10.1186/s12951-022-01508-4.
6
Lymphatic Regulation in Tissue Repair and Regeneration: Recent Advances and Future Perspective.
Curr Stem Cell Res Ther. 2023;18(6):730-732. doi: 10.2174/1574888X17666220607122742.
7
Cellular and Extracellular Non-coding RNAs in Cardiac Physiology and Diseases.
J Cardiovasc Transl Res. 2022 Jun;15(3):441-443. doi: 10.1007/s12265-022-10270-9. Epub 2022 May 16.
8
Lymphangiogenesis contributes to exercise-induced physiological cardiac growth.
J Sport Health Sci. 2022 Jul;11(4):466-478. doi: 10.1016/j.jshs.2022.02.005. Epub 2022 Feb 23.
9
lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth.
Circulation. 2022 Apr 19;145(16):1218-1233. doi: 10.1161/CIRCULATIONAHA.121.056850. Epub 2022 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验