Johnson T H, Elliott T J, Clark S R, Jaksch D
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore.
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
Phys Rev Lett. 2015 Mar 6;114(9):090602. doi: 10.1103/PhysRevLett.114.090602. Epub 2015 Mar 5.
Estimating the expected value of an observable appearing in a nonequilibrium stochastic process usually involves sampling. If the observable's variance is high, many samples are required. In contrast, we show that performing the same task without sampling, using tensor network compression, efficiently captures high variances in systems of various geometries and dimensions. We provide examples for which matching the accuracy of our efficient method would require a sample size scaling exponentially with system size. In particular, the high-variance observable e^{-βW}, motivated by Jarzynski's equality, with W the work done quenching from equilibrium at inverse temperature β, is exactly and efficiently captured by tensor networks.
估计非平衡随机过程中出现的可观测量的期望值通常需要进行采样。如果可观测量的方差很大,则需要大量样本。相比之下,我们表明,使用张量网络压缩在不进行采样的情况下执行相同任务,可以有效地捕捉各种几何形状和维度系统中的高方差。我们给出了一些例子,对于这些例子,要使我们的高效方法达到相同的精度,所需的样本大小将随系统大小呈指数增长。特别是,由雅津斯基等式激发的高方差可观测量(e^{-βW})(其中(W)是在逆温度(β)下从平衡态猝灭时所做的功)可以被张量网络精确且高效地捕捉。