Suppr超能文献

用于改善初级运动皮层细胞中单细胞分离的小波方法。

Wavelet methodology to improve single unit isolation in primary motor cortex cells.

作者信息

Ortiz-Rosario Alexis, Adeli Hojjat, Buford John A

机构信息

Department of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States.

Department of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Electrical and Computer Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States.

出版信息

J Neurosci Methods. 2015 May 15;246:106-18. doi: 10.1016/j.jneumeth.2015.03.014. Epub 2015 Mar 17.

Abstract

The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best.

摘要

从神经组织中细胞外记录动作电位的适当分离是神经科学和生物医学信号处理领域中一个活跃的研究领域。本文提出了一种使用小波变换(WT)、统计阈值方案和主成分分析(PCA)算法进行神经记录分离的方法。研究了五种不同母小波的有效性:双正交小波、Daubachies小波、离散Meyer小波、对称小波和Coifman小波;以及三种不同的小波系数阈值方案:固定形式阈值、Stein无偏风险估计和极小极大;还有两种不同的阈值规则:软阈值和硬阈值。使用三种不同的统计量评估信号质量:均方误差、均方根和信噪比。使用两种不同的统计量评估聚类质量:分离距离和L比率。本研究表明,母小波的选择对单个单元神经活动的聚类和分离有很大影响,其中Daubachies 4小波和极小极大阈值方案表现最佳。

相似文献

3
Graph-Laplacian features for neural waveform classification.图-拉普拉斯特征在神经波形分类中的应用。
IEEE Trans Biomed Eng. 2011 May;58(5):1365-72. doi: 10.1109/TBME.2010.2090349. Epub 2010 Nov 1.

本文引用的文献

4
A detailed and fast model of extracellular recordings.详细而快速的细胞外记录模型。
Neural Comput. 2013 May;25(5):1191-212. doi: 10.1162/NECO_a_00433. Epub 2013 Mar 7.
8
A novel automated spike sorting algorithm with adaptable feature extraction.一种具有自适应特征提取功能的新型自动尖峰分类算法。
J Neurosci Methods. 2012 Oct 15;211(1):168-78. doi: 10.1016/j.jneumeth.2012.08.015. Epub 2012 Aug 21.
10
Wavelet coherence model for diagnosis of Alzheimer disease.基于小波相干模型的阿尔茨海默病诊断
Clin EEG Neurosci. 2012 Oct;43(4):268-78. doi: 10.1177/1550059412444970. Epub 2012 May 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验