Suppr超能文献

一种具有自适应特征提取功能的新型自动尖峰分类算法。

A novel automated spike sorting algorithm with adaptable feature extraction.

机构信息

BioMEMS Lab, University of Applied Sciences Aschaffenburg, 63743 Aschaffenburg, Germany.

出版信息

J Neurosci Methods. 2012 Oct 15;211(1):168-78. doi: 10.1016/j.jneumeth.2012.08.015. Epub 2012 Aug 21.

Abstract

To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach.

摘要

为了研究神经网络的电生理特性,基于微电极阵列的体外研究已经成为一种可行的分析工具。尽管在不断发展,但该领域仍然存在一项具有挑战性的任务:开发一种高效的尖峰分类算法,以便在单细胞水平上进行准确的信号分析。目前大多数可用的分类算法仅提取特定类型的特征,例如测量尖峰信号的主成分或小波系数,以便分离不同神经元产生的不同尖峰形状。然而,由于获得的尖峰形状多种多样,因此推导最佳特征集仍然是当前算法面临的一个非常复杂的问题。为了解决这个问题,我们提出了一种新的算法,(i)提取各种基于几何形状、小波和主成分的特征,(ii)自动推导最适合分类单个尖峰信号集的特征子集。因此,有一种新的方法可以评估所获得的尖峰特征的概率分布,并因此确定最适合实际尖峰分类的候选特征。这些候选特征可以形成一组单独调整的尖峰特征,通过随后的期望最大化聚类算法来分离所获得的神经元信号中存在的各种形状。使用模拟数据文件和在微电极阵列上培养的鸡胚神经元获得的数据进行的测试结果表明,分类效果非常出色,表明所描述的算法方法具有优越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验