Suppr超能文献

双顺反子杯状病毒mRNA上重新起始的多种机制。

Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs.

作者信息

Zinoviev Alexandra, Hellen Christopher U T, Pestova Tatyana V

机构信息

Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.

Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.

出版信息

Mol Cell. 2015 Mar 19;57(6):1059-1073. doi: 10.1016/j.molcel.2015.01.039.

Abstract

Reinitiation is a strategy used by viruses to express several cistrons from one mRNA. Although extremely weak after translation of long open reading frames (ORFs) on cellular mRNAs, reinitiation occurs efficiently on subgenomic bicistronic calicivirus mRNAs, enabling synthesis of minor capsid proteins. The process is governed by a short element upstream of the restart AUG, designated "termination upstream ribosomal binding site" (TURBS). It contains the conserved Motif 1 complementary to h26 of 18S rRNA, displayed in the loop of a hairpin formed by species-specific Motifs 2/2(∗). To determine the advantages conferred on reinitiation by TURBS, we reconstituted this process in vitro on two model bicistronic calicivirus mRNAs. We found that post-termination ribosomal tethering of mRNA by TURBS allows reinitiation by post-termination 80S ribosomes and diminishes dependence on eukaryotic initiation factor 3 (eIF3) of reinitiation by recycled 40S subunits, which can be mediated either by eIFs 2/1/1A or by Ligatin following ABCE1-dependent or -independent splitting of post-termination complexes.

摘要

重新起始是病毒用于从一个mRNA表达多个顺反子的一种策略。虽然在细胞mRNA上长开放阅读框(ORF)翻译后极其微弱,但重新起始在亚基因组双顺反子杯状病毒mRNA上高效发生,从而能够合成次要衣壳蛋白。该过程由重新起始AUG上游的一个短元件控制,该元件被称为“终止上游核糖体结合位点”(TURBS)。它包含与18S rRNA的h26互补的保守基序1,呈现在由物种特异性基序2/2(∗)形成的发夹环中。为了确定TURBS赋予重新起始的优势,我们在体外对两种双顺反子杯状病毒模型mRNA重建了这一过程。我们发现,TURBS对mRNA的终止后核糖体束缚作用允许终止后80S核糖体进行重新起始,并减少了重新起始对循环40S亚基的真核起始因子3(eIF3)的依赖性,这可以由eIFs 2/1/1A介导,或者在终止后复合物的ABCE1依赖性或非依赖性分裂后由连接蛋白介导。

相似文献

1
Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs.
Mol Cell. 2015 Mar 19;57(6):1059-1073. doi: 10.1016/j.molcel.2015.01.039.
3
Two alternative ways of start site selection in human norovirus reinitiation of translation.
J Biol Chem. 2014 Apr 25;289(17):11739-11754. doi: 10.1074/jbc.M114.554030. Epub 2014 Mar 5.
7
Expression of the VP2 protein of murine norovirus by a translation termination-reinitiation strategy.
PLoS One. 2009 Dec 22;4(12):e8390. doi: 10.1371/journal.pone.0008390.
9
Reinitiation and other unconventional posttermination events during eukaryotic translation.
Mol Cell. 2013 Jul 25;51(2):249-64. doi: 10.1016/j.molcel.2013.05.026. Epub 2013 Jun 27.

引用本文的文献

2
Emerging mechanisms of human mitochondrial translation regulation.
Trends Biochem Sci. 2025 Jul;50(7):566-584. doi: 10.1016/j.tibs.2025.03.007. Epub 2025 Apr 11.
4
A conserved class of viral RNA structures regulates translation reinitiation through dynamic ribosome interactions.
Cell Rep. 2025 Feb 25;44(2):115236. doi: 10.1016/j.celrep.2025.115236. Epub 2025 Feb 1.
5
MCTS2 and distinct eIF2D roles in uORF-dependent translation regulation revealed by in vitro re-initiation assays.
EMBO J. 2025 Feb;44(3):854-876. doi: 10.1038/s44318-024-00347-3. Epub 2025 Jan 2.
7
The human mitochondrial mRNA structurome reveals mechanisms of gene expression.
Science. 2024 Jul 19;385(6706):eadm9238. doi: 10.1126/science.adm9238.
8
Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms.
Life Sci Alliance. 2024 May 21;7(7). doi: 10.26508/lsa.202302501. Print 2024 Jul.
9
Host-like RNA Elements Regulate Virus Translation.
Viruses. 2024 Mar 20;16(3):468. doi: 10.3390/v16030468.

本文引用的文献

1
Structural changes enable start codon recognition by the eukaryotic translation initiation complex.
Cell. 2014 Oct 23;159(3):597-607. doi: 10.1016/j.cell.2014.10.001. Epub 2014 Oct 16.
2
DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth.
Nature. 2014 Aug 14;512(7513):208-212. doi: 10.1038/nature13401. Epub 2014 Jul 6.
3
Two alternative ways of start site selection in human norovirus reinitiation of translation.
J Biol Chem. 2014 Apr 25;289(17):11739-11754. doi: 10.1074/jbc.M114.554030. Epub 2014 Mar 5.
4
Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP.
Nucleic Acids Res. 2014 Mar;42(5):3409-18. doi: 10.1093/nar/gkt1279. Epub 2013 Dec 11.
5
Molecular architecture of a eukaryotic translational initiation complex.
Science. 2013 Nov 15;342(6160):1240585. doi: 10.1126/science.1240585. Epub 2013 Nov 7.
6
Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit.
Nature. 2013 Nov 28;503(7477):539-43. doi: 10.1038/nature12658. Epub 2013 Nov 3.
7
Gene expression regulation by upstream open reading frames and human disease.
PLoS Genet. 2013;9(8):e1003529. doi: 10.1371/journal.pgen.1003529. Epub 2013 Aug 8.
8
Reinitiation and other unconventional posttermination events during eukaryotic translation.
Mol Cell. 2013 Jul 25;51(2):249-64. doi: 10.1016/j.molcel.2013.05.026. Epub 2013 Jun 27.
9
Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29.
Cell. 2013 May 23;153(5):1108-19. doi: 10.1016/j.cell.2013.04.036.
10
Structures of the human and Drosophila 80S ribosome.
Nature. 2013 May 2;497(7447):80-5. doi: 10.1038/nature12104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验