Suppr超能文献

一种基于索赔数据的算法用于识别结直肠癌复发情况的开发。

Development of a claims-based algorithm to identify colorectal cancer recurrence.

作者信息

Deshpande Anjali D, Schootman Mario, Mayer Allese

机构信息

Division of General Medical Sciences, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO.

Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO.

出版信息

Ann Epidemiol. 2015 Apr;25(4):297-300. doi: 10.1016/j.annepidem.2015.01.005. Epub 2015 Jan 16.

Abstract

PURPOSE

To examine the validity of claims data to identify colorectal cancer (CRC) recurrence and determine the extent to which misclassification of recurrence status affects estimates of its association with overall survival in a population-based administrative database.

METHODS

We calculated the accuracy of claims data relative to medical records from one large tertiary hospital to identify CRC recurrence. We estimated the effect of misclassifying recurrence on survival by applying these findings to the linked Surveillance, Epidemiology, and End Results-Medicare data.

RESULTS

Of 174 eligible CRC patients identified through medical records, 32 (18.4%) had a recurrence. A claims-based algorithm of secondary malignancy codes yielded a sensitivity of 81% and specificity of 99% for identifying recurrence. Agreement between data sources was almost perfect (kappa: 0.86). In a model unadjusted for misclassification, CRC patients with recurrence were 3.04 times (95% confidence interval: 2.92-3.17) more likely to die of any cause than those without recurrence. In the corrected model, CRC patients with recurrence were 3.47 times (95% confidence interval: 3.06-4.14) more likely to die than those without recurrence.

CONCLUSIONS

Identifying recurrence in CRC patients using claims data is feasible with moderate sensitivity and high specificity. Future studies can use this algorithm with Surveillance, Epidemiology, and End Results-Medicare data to study treatment patterns and outcomes of CRC patients with recurrence.

摘要

目的

在一个基于人群的行政数据库中,检验索赔数据用于识别结直肠癌(CRC)复发的有效性,并确定复发状态的错误分类对其与总生存关联估计值的影响程度。

方法

我们计算了相对于一家大型三级医院病历的索赔数据识别CRC复发的准确性。通过将这些结果应用于关联的监测、流行病学和最终结果-医疗保险数据,我们估计了复发错误分类对生存的影响。

结果

通过病历识别出的174例符合条件的CRC患者中,32例(18.4%)出现复发。基于索赔的继发性恶性肿瘤编码算法识别复发的敏感性为81%,特异性为99%。数据源之间的一致性几乎完美(kappa值:0.86)。在未校正错误分类的模型中,复发的CRC患者死于任何原因的可能性是未复发患者的3.04倍(95%置信区间:2.92 - 3.17)。在校正后的模型中,复发的CRC患者死亡的可能性是未复发患者的3.47倍(95%置信区间:3.06 - 4.14)。

结论

使用索赔数据识别CRC患者的复发具有中等敏感性和高特异性,是可行的。未来的研究可以将该算法与监测、流行病学和最终结果-医疗保险数据一起用于研究复发CRC患者的治疗模式和结局。

相似文献

引用本文的文献

本文引用的文献

4
Use of administrative data to identify colorectal liver metastasis.利用行政数据识别结直肠癌肝转移。
J Surg Res. 2012 Jul;176(1):141-6. doi: 10.1016/j.jss.2011.07.022. Epub 2011 Aug 10.
7
Evaluation of trends in the cost of initial cancer treatment.初始癌症治疗成本趋势评估。
J Natl Cancer Inst. 2008 Jun 18;100(12):888-97. doi: 10.1093/jnci/djn175. Epub 2008 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验