Li Ning, Tompkins Nathan, Gonzalez-Ochoa Hector, Fraden Seth
Department of Physics, Brandeis University, 02454, Waltham, MA, USA.
Eur Phys J E Soft Matter. 2015 Mar;38(3):18. doi: 10.1140/epje/i2015-15018-3. Epub 2015 Mar 23.
The Belousov-Zhabotinsky (BZ) reaction has become the prototype of nonlinear chemical dynamics. Microfluidic techniques provide a convenient method for emulsifying BZ solutions into monodispersed drops with diameters of tens to hundreds of microns, providing a unique system in which reaction-diffusion theory can be quantitatively tested. In this work, we investigate monolayers of microfluidically generated BZ drops confined in close-packed two-dimensional (2D) arrays through experiments and finite element simulations. We describe the transition from oscillatory to stationary chemical states with increasing coupling strength, controlled by independently varying the reaction chemistry within a drop and diffusive flux between drops. For stationary drops, we studied how the ratio of stationary oxidized to stationary reduced drops varies with coupling strength. In addition, using simulation, we quantified the chemical heterogeneity sufficient to induce mixed stationary and oscillatory patterns.
贝洛索夫-扎博廷斯基(BZ)反应已成为非线性化学动力学的原型。微流控技术为将BZ溶液乳化成直径为几十到几百微米的单分散液滴提供了一种便捷方法,从而提供了一个可对反应-扩散理论进行定量测试的独特系统。在这项工作中,我们通过实验和有限元模拟研究了微流控产生的BZ液滴单层,这些液滴被限制在紧密堆积的二维(2D)阵列中。我们描述了随着耦合强度增加,从振荡化学状态到静态化学状态的转变,这是通过独立改变液滴内的反应化学和液滴间的扩散通量来控制的。对于静态液滴,我们研究了静态氧化液滴与静态还原液滴的比例如何随耦合强度变化。此外,通过模拟,我们量化了足以诱导混合静态和振荡模式的化学不均匀性。