Jackson Pamela R, Juliano Joseph, Hawkins-Daarud Andrea, Rockne Russell C, Swanson Kristin R
Mathematical NeuroOncology Lab, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N St Clair Street, Suite 1300, Chicago, IL, 60611, USA.
Bull Math Biol. 2015 May;77(5):846-56. doi: 10.1007/s11538-015-0067-7. Epub 2015 Mar 21.
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor associated with a poor median survival of 15-18 months, yet there is wide heterogeneity across and within patients. This heterogeneity has been the source of significant clinical challenges facing patients with GBM and has hampered the drive toward more precision or personalized medicine approaches to treating these challenging tumors. Over the last two decades, the field of Mathematical Neuro-oncology has grown out of desire to use (often patient-specific) mathematical modeling to better treat GBMs. Here, we will focus on a series of clinically relevant results using patient-specific mathematical modeling. The core model at the center of these results incorporates two hallmark features of GBM, proliferation [Formula: see text] and invasion (D), as key parameters. Based on routinely obtained magnetic resonance images, each patient's tumor can be characterized using these two parameters. The Proliferation-Invasion (PI) model uses [Formula: see text] and D to create patient-specific growth predictions. The PI model, its predictions, and parameters have been used in a number of ways to derive biological insight. Beyond predicting growth, the PI model has been utilized to identify patients who benefit from different surgery strategies, to prognosticate response to radiation therapy, to develop a treatment response metric, and to connect clinical imaging features and genetic information. Demonstration of the PI model's clinical relevance supports the growing role for it and other mathematical models in routine clinical practice.
多形性胶质母细胞瘤(GBM)是最常见的原发性恶性脑肿瘤,患者的中位生存期较短,仅为15 - 18个月,而且患者之间以及患者内部都存在很大的异质性。这种异质性一直是GBM患者面临的重大临床挑战的根源,并且阻碍了朝着更精准或个性化医疗方法治疗这些具有挑战性肿瘤的努力。在过去二十年中,数学神经肿瘤学领域出于利用(通常是针对患者个体的)数学建模来更好地治疗GBM的愿望而发展起来。在这里,我们将重点关注一系列使用患者个体数学建模得出的临床相关结果。这些结果的核心模型纳入了GBM的两个标志性特征,增殖([公式:见原文])和侵袭(D),作为关键参数。基于常规获取的磁共振图像,每个患者的肿瘤都可以用这两个参数来表征。增殖 - 侵袭(PI)模型使用[公式:见原文]和D来创建针对患者个体的生长预测。PI模型、其预测结果和参数已经以多种方式被用于获得生物学见解。除了预测生长外,PI模型还被用于识别从不同手术策略中获益的患者、预测对放射治疗的反应、制定治疗反应指标,以及将临床影像特征和基因信息联系起来。PI模型临床相关性的证明支持了它和其他数学模型在常规临床实践中日益重要的作用。