Suppr超能文献

用于肿瘤学中患者特异性决策的具有量化不确定性的预测性数字孪生模型

Predictive Digital Twins with Quantified Uncertainty for Patient-Specific Decision Making in Oncology.

作者信息

Pash Graham, Villa Umberto, Hormuth David A, Yankeelov Thomas E, Willcox Karen

机构信息

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA.

Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

ArXiv. 2025 May 13:arXiv:2505.08927v1.

Abstract

Quantifying the uncertainty in predictive models is critical for establishing trust and enabling risk-informed decision making for personalized medicine. In contrast to one-size-fits-all approaches that seek to mitigate risk at the population level, digital twins enable personalized modeling thereby potentially improving individual patient outcomes. Realizing digital twins in biomedicine requires scalable and efficient methods to integrate patient data with mechanistic models of disease progression. This study develops an end-to-end data-to-decisions methodology that combines longitudinal non-invasive imaging data with mechanistic models to estimate and predict spatiotemporal tumor progression accounting for patient-specific anatomy. Through the solution of a statistical inverse problem, imaging data inform the spatially varying parameters of a reaction-diffusion model of tumor progression. An efficient parallel implementation of the forward model coupled with a scalable approximation of the Bayesian posterior distribution enables rigorous, but tractable, quantification of uncertainty due to the sparse, noisy measurements. The methodology is verified on a virtual patient with synthetic data to control for model inadequacy, noise level, and the frequency of data collection. The application to decision-making is illustrated by evaluating the importance of imaging frequency and formulating an optimal experimental design question. The clinical relevance is demonstrated through a model validation study on a cohort of patients with publicly available longitudinal imaging data.

摘要

量化预测模型中的不确定性对于建立信任并为个性化医疗实现基于风险的决策至关重要。与旨在在人群层面降低风险的一刀切方法不同,数字孪生实现了个性化建模,从而有可能改善个体患者的治疗效果。在生物医学中实现数字孪生需要可扩展且高效的方法,将患者数据与疾病进展的机制模型相结合。本研究开发了一种端到端的数据到决策方法,该方法将纵向非侵入性成像数据与机制模型相结合,以估计和预测考虑患者特定解剖结构的时空肿瘤进展。通过解决统计反问题,成像数据为肿瘤进展反应扩散模型的空间变化参数提供信息。正向模型的高效并行实现与贝叶斯后验分布的可扩展近似相结合,能够对由于稀疏、有噪声的测量而产生的不确定性进行严格但易于处理的量化。该方法在具有合成数据的虚拟患者上进行了验证,以控制模型不充分、噪声水平和数据收集频率。通过评估成像频率的重要性并提出一个最优实验设计问题,说明了该方法在决策中的应用。通过对一组具有公开可用纵向成像数据的患者进行模型验证研究,证明了其临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b9d/12132268/8cb8980ed5b7/nihpp-2505.08927v1-f0015.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验