Kreger Jesse, Gonzalez Edgar, Wu Xiaojun, Roussos Torres Evanthia T, MacLean Adam L
bioRxiv. 2025 Aug 11:2025.08.11.669777. doi: 10.1101/2025.08.11.669777.
Immunotherapies that target the host immune system to mount effective responses hold great promise. Yet, overcoming patient- and organ-specific tumor heterogeneities remains a significant challenge. In order to quantify individual patient responses, we fit a tumor-immune mathematical model to patient and site-specific dynamics during combination therapy (nivolumab + ipilimumab + entinostat) informed by RECIST measurements of the tumor dynamics and immune markers measured by spatial proteomics. Bayesian parameter inference of site-specific patient responses revealed that only the immunosuppression parameters were predictive of response; parameters controlling cytotoxicity were uninformative. Via comparison of a large cohort of fitted tumors, we quantified the variability in tumor-immune dynamics to reveal controllable parameter regimes. We developed methods that employed posterior parameter sampling and simulation to create virtual tumor populations, enabling extrapolation beyond the data to predict probabilities of response in metastatic lesions, even when no data exist at a site. We also showed that scans in the week immediately following treatment are particularly valuable to identify the tumor dynamics. Our modeling and inference framework can thus be used to overcome sample size limitations to create virtual patient cohorts that give new insights into mechanisms of disease progression.
旨在激发有效免疫反应的宿主免疫系统靶向免疫疗法前景广阔。然而,克服患者和器官特异性肿瘤异质性仍是一项重大挑战。为了量化个体患者的反应,我们根据肿瘤动态的RECIST测量结果和通过空间蛋白质组学测量的免疫标志物,将肿瘤-免疫数学模型拟合到联合治疗(纳武单抗+伊匹单抗+恩替诺特)期间的患者和部位特异性动态变化中。对部位特异性患者反应的贝叶斯参数推断表明,只有免疫抑制参数可预测反应;控制细胞毒性的参数并无信息价值。通过对大量拟合肿瘤进行比较,我们量化了肿瘤-免疫动态变化的变异性,以揭示可控参数范围。我们开发了利用后验参数采样和模拟来创建虚拟肿瘤群体的方法,即使在某一部位没有数据时,也能外推数据以预测转移病灶的反应概率。我们还表明,治疗后紧接着的一周内进行的扫描对于识别肿瘤动态变化特别有价值。因此,我们的建模和推断框架可用于克服样本量限制,创建虚拟患者队列,从而为疾病进展机制提供新的见解。