Wen Xiaoquan
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
Biostatistics. 2015 Oct;16(4):701-12. doi: 10.1093/biostatistics/kxv009. Epub 2015 Mar 21.
We consider the problems of hypothesis testing and model comparison under a flexible Bayesian linear regression model whose formulation is closely connected with the linear mixed effect model and the parametric models for Single Nucleotide Polymorphism (SNP) set analysis in genetic association studies. We derive a class of analytic approximate Bayes factors and illustrate their connections with a variety of frequentist test statistics, including the Wald statistic and the variance component score statistic. Taking advantage of Bayesian model averaging and hierarchical modeling, we demonstrate some distinct advantages and flexibilities in the approaches utilizing the derived Bayes factors in the context of genetic association studies. We demonstrate our proposed methods using real or simulated numerical examples in applications of single SNP association testing, multi-locus fine-mapping and SNP set association testing.
我们考虑了一个灵活的贝叶斯线性回归模型下的假设检验和模型比较问题,该模型的构建与线性混合效应模型以及基因关联研究中用于单核苷酸多态性(SNP)集分析的参数模型密切相关。我们推导了一类解析近似贝叶斯因子,并说明了它们与各种频率主义检验统计量的联系,包括 Wald 统计量和方差分量得分统计量。利用贝叶斯模型平均和层次建模,我们展示了在基因关联研究背景下利用推导的贝叶斯因子的方法具有一些明显的优势和灵活性。我们在单 SNP 关联检验、多位点精细定位和 SNP 集关联检验的应用中,使用真实或模拟的数值示例展示了我们提出的方法。