Callaway Danielle A, Riquelme Manuel A, Sharma Ramaswamy, Lopez-Cruzan Marisa, Herman Brian A, Jiang Jean X
Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
Bone. 2015 Jul;76:40-8. doi: 10.1016/j.bone.2015.03.006. Epub 2015 Mar 19.
The loss of caspase-2 (Casp-2) in mice results in an osteopenic phenotype associated with increased numbers of osteoclasts in vivo. In this study, we show that Casp-2 is involved in osteoclastogenesis. Protein levels of Casp-2 decrease during the differentiation of macrophages to osteoclasts. Furthermore, siRNA-mediated Casp-2 knockdown in osteoclast precursors or differentiation of bone marrow macrophage (BMM) precursors from Casp2(-/-) mice results in increased osteoclast numbers and tartrate-resistant acid phosphatase (TRAP) activity. Casp2(-/-) osteoclasts are larger in size compared to wild-type osteoclasts and exhibited increased numbers of nuclei, perhaps due to increased precursor fusion. The loss of Casp-2 did not alter earlier stages of differentiation, but had a greater consequence on later stages involving NFATc1 auto-amplification and pre-osteoclast fusion. We have previously shown that the loss of Casp-2 results in increased oxidative stress in the bone. Reactive oxygen species (ROS) is known to play a critical role in late osteoclast differentiation and we show that total ROS and specifically, mitochondrial ROS, significantly increased in Casp2(-/-) BMM precursors after RANKL administration, with a concomitant reduction in FoxO3a and its target antioxidant enzymes, catalase and superoxide 2 (SOD2). Because mitochondrial ROS has been identified as a putative regulator of the later stages of differentiation, the heightened ROS levels in Casp2(-/-) cells likely promote precursor fusion and increased osteoclast numbers. In conclusion, our results indicate a novel role of Casp-2 in the osteoclast as a modulator of total and mitochondrial ROS and osteoclast differentiation.
小鼠体内半胱天冬酶 -2(Casp-2)缺失会导致骨量减少的表型,且体内破骨细胞数量增加。在本研究中,我们发现Casp-2参与破骨细胞生成过程。在巨噬细胞向破骨细胞分化过程中,Casp-2的蛋白水平会下降。此外,在破骨细胞前体中通过小干扰RNA(siRNA)介导敲低Casp-2,或使来自Casp2(-/-)小鼠的骨髓巨噬细胞(BMM)前体分化,会导致破骨细胞数量增加以及抗酒石酸酸性磷酸酶(TRAP)活性增强。与野生型破骨细胞相比,Casp2(-/-)破骨细胞体积更大,且细胞核数量增多,这可能是由于前体融合增加所致。Casp-2的缺失并未改变分化的早期阶段,但对涉及活化T细胞核因子c1(NFATc1)自身扩增和前破骨细胞融合的后期阶段影响更大。我们之前已经表明,Casp-2的缺失会导致骨骼中氧化应激增加。已知活性氧(ROS)在破骨细胞分化后期起关键作用,我们发现,在给予核因子κB受体活化因子配体(RANKL)后,Casp2(-/-) BMM前体中的总ROS,特别是线粒体ROS显著增加,同时叉头框蛋白O3a(FoxO3a)及其靶标抗氧化酶过氧化氢酶和超氧化物歧化酶2(SOD2)减少。由于线粒体ROS已被确定为分化后期的假定调节因子,Casp2(-/-)细胞中升高的ROS水平可能促进前体融合并增加破骨细胞数量。总之,我们的结果表明Casp-2在破骨细胞中作为总ROS和线粒体ROS以及破骨细胞分化的调节剂具有新的作用。