Suppr超能文献

通过大规模基因网络分析鉴定疾病候选基因。

Identifying disease candidate genes via large-scale gene network analysis.

作者信息

Kim Haseong, Park Taesung, Gelenbe Erol

出版信息

Int J Data Min Bioinform. 2014;10(2):175-88. doi: 10.1504/ijdmb.2014.064014.

Abstract

Gene Regulatory Networks (GRN) provide systematic views of complex living systems, offering reliable and large-scale GRNs to identify disease candidate genes. A reverse engineering technique, Bayesian Model Averaging-based Networks (BMAnet), which ensembles all appropriate linear models to tackle uncertainty in model selection that integrates heterogeneous biological data sets is introduced. Using network evaluation metrics, we compare the networks that are thus identified. The metric 'Random walk with restart (Rwr)' is utilised to search for disease genes. In a simulation our method shows better performance than elastic-net and Gaussian graphical models, but topological quantities vary among the three methods. Using real-data, brain tumour gene expression samples consisting of non-tumour, grade III and grade IV are analysed to estimate networks with a total of 4422 genes. Based on these networks, 169 brain tumour-related candidate genes were identified and some were found to relate to 'wound', 'apoptosis', and 'cell death' processes.

摘要

基因调控网络(GRN)提供了复杂生命系统的系统视图,提供可靠的大规模GRN以识别疾病候选基因。本文介绍了一种逆向工程技术,即基于贝叶斯模型平均的网络(BMAnet),它整合了所有合适的线性模型,以解决模型选择中的不确定性,该模型选择整合了异质生物数据集。使用网络评估指标,我们比较了由此识别出的网络。利用“带重启的随机游走(Rwr)”指标来搜索疾病基因。在模拟中,我们的方法表现优于弹性网络和高斯图形模型,但三种方法的拓扑量有所不同。使用真实数据,分析了由非肿瘤、III级和IV级组成的脑肿瘤基因表达样本,以估计总共4422个基因的网络。基于这些网络,鉴定出169个与脑肿瘤相关的候选基因,其中一些与“伤口”、“凋亡”和“细胞死亡”过程相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验