Suppr超能文献

蛋白质相互作用组网络的比较分析对具有癌症特征的候选基因进行了优先排序。

Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.

作者信息

Li Yongsheng, Sahni Nidhi, Yi Song

机构信息

Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Oncotarget. 2016 Nov 29;7(48):78841-78849. doi: 10.18632/oncotarget.12879.

Abstract

Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.

摘要

全面了解人类癌症机制需要确定一份详尽的癌症相关基因清单,这些基因可作为各类癌症诊断和治疗的生物标志物。尽管在功能研究中已取得重大进展,以揭示参与癌症的基因,但这些努力往往既耗时又昂贵。因此,全面鉴定癌症候选基因仍然具有挑战性。基于网络的方法通过分析细胞中的复杂分子相互作用加速了这一过程。然而,各种相互作用组网络在何种程度上有助于预测癌症相关候选基因仍不明确。在本研究中,我们评估了不同的人类蛋白质-蛋白质相互作用组网络,并比较了它们在癌症基因优先级排序中的应用。我们的结果表明,网络分析可以提高识别新型癌症基因的能力。特别是,通过使用无偏的系统蛋白质相互作用图谱进行癌症基因优先级排序,这种预测能力可以得到增强。功能分析表明,网络预测中排名靠前的基因在文献中经常与癌症相关术语同时出现,而且,这些候选基因在各类癌症中确实经常发生突变。最后,我们的研究表明,将相互作用组网络与其他组学数据集整合,可以为癌症相关基因和潜在分子机制提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9ee/5346681/2f94a5ee15a4/oncotarget-07-78841-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验