Clement Emalie J, Schulze Thomas T, Soliman Ghada A, Wysocki Beata J, Davis Paul H, Wysocki Tadeusz A
Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA.
Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
IEEE Access. 2020;8:79734-79744. doi: 10.1109/access.2020.2986833. Epub 2020 Apr 17.
Increased technological methods have enabled the investigation of biology at nanoscale levels. Such systems require the use of computational methods to comprehend the complex interactions that occur. The dynamics of metabolic systems have been traditionally described utilizing differential equations without fully capturing the heterogeneity of biological systems. Stochastic modeling approaches have recently emerged with the capacity to incorporate the statistical properties of such systems. However, the processing of stochastic algorithms is a computationally intensive task with intrinsic limitations. Alternatively, the queueing theory approach, historically used in the evaluation of telecommunication networks, can significantly reduce the computational power required to generate simulated results while simultaneously reducing the expansion of errors. We present here the application of queueing theory to simulate stochastic metabolic networks with high efficiency. With the use of glycolysis as a well understood biological model, we demonstrate the power of the proposed modeling methods discussed herein. Furthermore, we describe the simulation and pharmacological inhibition of glycolysis to provide an example of modeling capabilities.
技术方法的进步使得在纳米尺度上对生物学进行研究成为可能。此类系统需要使用计算方法来理解所发生的复杂相互作用。代谢系统的动力学传统上是用微分方程来描述的,但未能充分捕捉生物系统的异质性。随机建模方法最近应运而生,能够纳入此类系统的统计特性。然而,随机算法的处理是一项计算密集型任务,存在内在局限性。另外,排队论方法历史上用于评估电信网络,它可以显著降低生成模拟结果所需的计算能力,同时减少误差的扩大。我们在此展示排队论在高效模拟随机代谢网络中的应用。通过使用糖酵解这一广为人知的生物学模型,我们证明了本文所讨论的建模方法的强大之处。此外,我们描述了糖酵解的模拟和药理抑制,以提供建模能力的一个示例。