Suppr超能文献

使用支持向量机预测HLA-DRB1*0401结合肽段

Prediction of HLA-DRB1*0401 binding peptides using support vector machine.

作者信息

Huang Wenli, Yang Guobing, Zhao Xiaojun, Li Zerong

出版信息

Int J Data Min Bioinform. 2014;10(2):189-205. doi: 10.1504/ijdmb.2014.064015.

Abstract

In recent years, many machine learning methods have been developed to predict HLA binding peptides. However, because only limited types of descriptors characterising the protein features are included in these approaches, these methods have poor prediction accuracy. In this study, we applied support vector machine methods to predict the peptides that bind to the major histocompatibility complexes Class II molecule HLA-DRBl*0401 using six sets of molecular descriptors characterising the primary structures of the peptides. We found that some feature groups provided good prediction accuracies and the overall accuracies were greater than 95% and some feature groups had poor accuracies of only 50%. The performance was improved significantly by additional feature selection and the overall accuracies from each group or combination of descriptors were greater than 90%. Of note, the inclusion of necessary informative and discriminative descriptors improved the prediction accuracies.

摘要

近年来,已经开发了许多机器学习方法来预测HLA结合肽。然而,由于这些方法仅包含有限类型的表征蛋白质特征的描述符,因此这些方法的预测准确性较差。在本研究中,我们应用支持向量机方法,使用六组表征肽一级结构的分子描述符来预测与主要组织相容性复合体II类分子HLA-DRBl*0401结合的肽。我们发现,一些特征组提供了良好的预测准确性,总体准确率大于95%,而一些特征组的准确率较差,仅为50%。通过额外的特征选择,性能得到了显著提高,每个描述符组或组合的总体准确率都大于90%。值得注意的是,纳入必要的信息性和判别性描述符提高了预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验