Edri Reuven, Yaffe Yakey, Ziller Michael J, Mutukula Naresh, Volkman Rotem, David Eyal, Jacob-Hirsch Jasmine, Malcov Hagar, Levy Carmit, Rechavi Gideon, Gat-Viks Irit, Meissner Alexander, Elkabetz Yechiel
Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nat Commun. 2015 Mar 23;6:6500. doi: 10.1038/ncomms7500.
Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease.
破译多能干细胞(PSC)来源的神经后代的异质性,对于揭示不同祖细胞的起源、定义它们的谱系以及识别驱动细胞通过不同潜能进行转变的命运决定因素至关重要。在这里,我们基于Notch激活状态前瞻性地分离了连续出现的PSC来源的原代祖细胞。我们首先分离早期神经上皮细胞,并展示了它们广泛的Notch依赖性发育和增殖潜能。神经上皮细胞进一步产生连续的Notch依赖性功能性原代祖细胞,从早期和中期神经源性放射状胶质细胞及其衍生的基底祖细胞,到胶质源性放射状胶质细胞和成年样神经祖细胞,共同概括了神经干细胞(NSC)个体发育的特征。基因表达谱分析揭示了动态的阶段特异性转录模式,这些模式可能通过Notch激活将不同祖细胞身份的发育联系起来。我们的观察结果为表征和操纵不同的祖细胞类型提供了一个平台,这些祖细胞类型适用于开发简化的神经谱系特化范式,用于模拟健康和疾病中的发育过程。