Suppr超能文献

辅助蛋白TRIP8b对HCN离子通道进行调控的结构机制。

Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b.

作者信息

DeBerg Hannah A, Bankston John R, Rosenbaum Joel C, Brzovic Peter S, Zagotta William N, Stoll Stefan

机构信息

Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.

出版信息

Structure. 2015 Apr 7;23(4):734-44. doi: 10.1016/j.str.2015.02.007. Epub 2015 Mar 19.

Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cyclic AMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here, we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance, we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels.

摘要

超极化激活的环核苷酸门控(HCN)离子通道是许多神经元中存在的阳离子Ih电流的基础。环磷酸腺苷(cAMP)与HCN通道的直接结合增加了通道开放的速率和程度,并导致激活电压依赖性的去极化偏移。TRIP8b是一种辅助蛋白,可调节HCN通道的细胞表面表达和树突定位,并降低这些通道对环核苷酸的依赖性。在这里,我们使用电子顺磁共振(EPR)表明TRIP8b与HCN2通道的环核苷酸结合结构域(CNBD)的无辅基状态结合,而不会改变整体结构域结构。通过EPR和核磁共振,我们确定了TRIP8b相对于HCN通道的位置,并确定了CNBD上的结合界面。这些数据为理解TRIP8b如何调节HCN通道对环核苷酸的依赖性提供了一个结构框架。

相似文献

1
Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b.
Structure. 2015 Apr 7;23(4):734-44. doi: 10.1016/j.str.2015.02.007. Epub 2015 Mar 19.
3
Mechanism for the inhibition of the cAMP dependence of HCN ion channels by the auxiliary subunit TRIP8b.
J Biol Chem. 2017 Oct 27;292(43):17794-17803. doi: 10.1074/jbc.M117.800722. Epub 2017 Sep 1.
6
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14577-82. doi: 10.1073/pnas.1410389111. Epub 2014 Sep 2.
7
The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms.
J Biol Chem. 2020 Jun 12;295(24):8164-8173. doi: 10.1074/jbc.RA120.013281. Epub 2020 Apr 27.
9
Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7899-904. doi: 10.1073/pnas.1201997109. Epub 2012 May 1.

引用本文的文献

1
Hippocampal dorsal CA1: Functional connectivity and role in HCN channelopathies in affective diseases and epilepsy.
IBRO Neurosci Rep. 2025 Apr 4;18:644-656. doi: 10.1016/j.ibneur.2025.03.008. eCollection 2025 Jun.
2
Localized Reconstruction of Multimodal Distance Distribution from DEER Data of Biopolymers.
bioRxiv. 2025 Jan 3:2025.01.02.631084. doi: 10.1101/2025.01.02.631084.
3
Protein Modeling with DEER Spectroscopy.
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
4
Modeling of Cu(II)-based protein spin labels using rotamer libraries.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6806-6816. doi: 10.1039/d3cp05951k.
5
A high affinity switch for cAMP in the HCN pacemaker channels.
Nat Commun. 2024 Jan 29;15(1):843. doi: 10.1038/s41467-024-45136-y.
6
Double Quantum Coherence ESR at Q-Band Enhances the Sensitivity of Distance Measurements at Submicromolar Concentrations.
J Phys Chem Lett. 2023 Oct 12;14(40):8909-8915. doi: 10.1021/acs.jpclett.3c02372. Epub 2023 Sep 28.
7
Validation of the binding stoichiometry between HCN channels and their neuronal regulator TRIP8b by single molecule measurements.
Front Physiol. 2022 Sep 26;13:998176. doi: 10.3389/fphys.2022.998176. eCollection 2022.
8
Regulation of HCN Channels by Protein Interactions.
Front Physiol. 2022 Jun 20;13:928507. doi: 10.3389/fphys.2022.928507. eCollection 2022.
9
I from synapses to networks: HCN channel functions and modulation in neurons.
Prog Biophys Mol Biol. 2021 Nov;166:119-132. doi: 10.1016/j.pbiomolbio.2021.06.002. Epub 2021 Jun 25.
10
Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements .
J Phys Chem B. 2021 May 27;125(20):5265-5274. doi: 10.1021/acs.jpcb.1c02371. Epub 2021 May 13.

本文引用的文献

1
Determination of End-to-End Distances in a Series of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron Electron Resonance Experiment.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2833-2837. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2833::AID-ANIE2833>3.0.CO;2-7.
2
Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14577-82. doi: 10.1073/pnas.1410389111. Epub 2014 Sep 2.
3
Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9816-21. doi: 10.1073/pnas.1405371111. Epub 2014 Jun 23.
5
Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP.
J Gen Physiol. 2013 Dec;142(6):599-612. doi: 10.1085/jgp.201311013.
6
Neurophysiology of HCN channels: from cellular functions to multiple regulations.
Prog Neurobiol. 2014 Jan;112:1-23. doi: 10.1016/j.pneurobio.2013.10.001. Epub 2013 Oct 29.
7
A secondary structural transition in the C-helix promotes gating of cyclic nucleotide-regulated ion channels.
J Biol Chem. 2013 May 3;288(18):12944-56. doi: 10.1074/jbc.M113.464123. Epub 2013 Mar 22.
8
NMR View: A computer program for the visualization and analysis of NMR data.
J Biomol NMR. 1994 Sep;4(5):603-14. doi: 10.1007/BF00404272.
9
Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7899-904. doi: 10.1073/pnas.1201997109. Epub 2012 May 1.
10
HCN channelopathies: pathophysiology in genetic epilepsy and therapeutic implications.
Br J Pharmacol. 2012 Jan;165(1):49-56. doi: 10.1111/j.1476-5381.2011.01507.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验