Suppr超能文献

利用双电子-电子共振光谱进行蛋白质建模。

Protein Modeling with DEER Spectroscopy.

作者信息

Tessmer Maxx H, Stoll Stefan

机构信息

Department of Chemistry, University of Washington, Seattle, Washington, USA; email:

出版信息

Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.

Abstract

Double electron-electron resonance (DEER) combined with site-directed spin labeling can provide distance distributions between selected protein residues to investigate protein structure and conformational heterogeneity. The utilization of the full quantitative information contained in DEER data requires effective protein and spin label modeling methods. Here, we review the application of DEER data to protein modeling. First, we discuss the significance of spin label modeling for accurate extraction of protein structural information and review the most popular label modeling methods. Next, we review several important aspects of protein modeling with DEER, including site selection, how DEER restraints are applied, common artifacts, and the unique potential of DEER data for modeling structural ensembles and conformational landscapes. Finally, we discuss common applications of protein modeling with DEER data and provide an outlook.

摘要

双电子-电子共振(DEER)结合定点自旋标记能够提供选定蛋白质残基之间的距离分布,以研究蛋白质结构和构象异质性。有效利用DEER数据中包含的完整定量信息需要有效的蛋白质和自旋标记建模方法。在此,我们综述了DEER数据在蛋白质建模中的应用。首先,我们讨论自旋标记建模对于准确提取蛋白质结构信息的重要性,并综述最常用的标记建模方法。接下来,我们综述利用DEER进行蛋白质建模的几个重要方面,包括位点选择、DEER约束条件的应用方式、常见伪影,以及DEER数据在构建结构集合和构象图谱方面的独特潜力。最后,我们讨论利用DEER数据进行蛋白质建模的常见应用并给出展望。

相似文献

1
Protein Modeling with DEER Spectroscopy.
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
2
Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease.
Methods Enzymol. 2015;564:153-87. doi: 10.1016/bs.mie.2015.07.019. Epub 2015 Sep 1.
3
Tracking protein domain movements by EPR distance determination and multilateration.
Methods Enzymol. 2022;666:121-144. doi: 10.1016/bs.mie.2022.02.016. Epub 2022 Mar 17.
4
High-Pressure EPR and Site-Directed Spin Labeling for Mapping Molecular Flexibility in Proteins.
Methods Enzymol. 2015;564:29-57. doi: 10.1016/bs.mie.2015.07.004. Epub 2015 Sep 9.
5
Explicit treatment of spin labels in modeling of distance constraints from dipolar EPR and DEER.
J Am Chem Soc. 2005 Jul 6;127(26):9334-5. doi: 10.1021/ja051652w.
6
Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1201-10. doi: 10.1073/pnas.1403179111. Epub 2014 Mar 18.
7
Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints.
PLoS Comput Biol. 2021 Jun 16;17(6):e1009107. doi: 10.1371/journal.pcbi.1009107. eCollection 2021 Jun.
9
The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements.
Angew Chem Int Ed Engl. 2015 May 18;54(21):6330-4. doi: 10.1002/anie.201501968. Epub 2015 Mar 27.
10
Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.
Methods Enzymol. 2015;558:279-331. doi: 10.1016/bs.mie.2015.02.005. Epub 2015 Mar 26.

引用本文的文献

本文引用的文献

1
OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization.
Nat Methods. 2024 Aug;21(8):1514-1524. doi: 10.1038/s41592-024-02272-z. Epub 2024 May 14.
3
Protein ensemble modeling and analysis with MMMx.
Protein Sci. 2024 Mar;33(3):e4906. doi: 10.1002/pro.4906.
4
Modeling of Cu(II)-based protein spin labels using rotamer libraries.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6806-6816. doi: 10.1039/d3cp05951k.
5
Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations.
J Chem Theory Comput. 2024 Feb 13;20(3):1434-1447. doi: 10.1021/acs.jctc.3c01081. Epub 2024 Jan 12.
6
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination.
Nat Methods. 2024 Jan;21(1):110-116. doi: 10.1038/s41592-023-02087-4. Epub 2023 Nov 30.
7
Predicting multiple conformations via sequence clustering and AlphaFold2.
Nature. 2024 Jan;625(7996):832-839. doi: 10.1038/s41586-023-06832-9. Epub 2023 Nov 13.
8
DEERefiner-assisted structural refinement using pulsed dipolar spectroscopy: a study on multidrug transporter LmrP.
Phys Chem Chem Phys. 2023 Sep 20;25(36):24508-24517. doi: 10.1039/d3cp02569a.
9
Modeling conformational states of proteins with AlphaFold.
Curr Opin Struct Biol. 2023 Aug;81:102645. doi: 10.1016/j.sbi.2023.102645. Epub 2023 Jun 29.
10
Ultrafast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids.
J Am Chem Soc. 2023 Jul 12;145(27):14608-14620. doi: 10.1021/jacs.3c00967. Epub 2023 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验