Suppr超能文献

爪蟾(Rana pipiens)卵中受精诱导的离子电导。

Fertilization-induced ionic conductances in eggs of the frog, Rana pipiens.

作者信息

Jaffe L A, Schlichter L C

出版信息

J Physiol. 1985 Jan;358:299-319. doi: 10.1113/jphysiol.1985.sp015552.

Abstract

Fertilization of the frog egg (Rana pipiens) elicits a positive-going shift in membrane potential (fertilization potential) that lasts 10-20 min and functions as a fast block to polyspermy. We examined the ion conductances underlying the fertilization potential, using the voltage-clamp technique. We measured the membrane capacitance during the fertilization potential by applying an alternating current. We also determined the intracellular K and Cl concentrations in the egg, using ion-selective micro-electrodes. The conductance is largest in the first 2 min after fertilization. Regardless of whether the stimulus is provided by one or by more than one sperm or by artificial activation, the size of the conductance increase is the same, reaching a maximum of about 40 microseconds. Two separate conductances are involved at fertilization: Cl and K. [K]i = 121 mM and [Cl]i = 44 mM. The natural external medium is pond water (approximated in our experiments by 10% Ringer solution); therefore, an increase in K and Cl conductances leads to an efflux of both ions. The equilibrium potential of the fertilization current is between the Cl and K equilibrium potentials (ECl and EK), closer to ECl. 10 mM-external tetraethylammonium (TEA) brings the equilibrium potential close to ECl and reduces the maximum conductance by about half. The Cl conductance is not blocked by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS). The time courses of the K and Cl conductances are similar. The TEA-resistant conductance (primarily Cl conductance) activated at fertilization increases as the membrane potential becomes more positive. A voltage-sensitive Na conductance present in the unfertilized egg disappears after fertilization. During fertilization this conductance is too small to contribute significantly to the fertilization potential. The membrane capacitance increases by an average of 1.9 times in the first 2 min following the rise of the fertilization potential, during the period of cortical vesicle exocytosis. Capacitance then gradually decreases; at 1 h after fertilization, capacitance is 82% of the value in the unfertilized egg. The conductance increase precedes the capacitance increase by several seconds. Therefore the initial appearance of Cl and K channels cannot be accounted for by addition of membrane by cortical vesicle exocytosis. The conductance subsequently decreases, suggesting that the disappearance of the Cl and K channels is not caused by membrane removal.

摘要

青蛙卵(豹蛙)受精会引发膜电位的正向变化(受精电位),该电位持续10 - 20分钟,起到快速阻止多精受精的作用。我们使用电压钳技术研究了受精电位背后的离子电导。通过施加交流电,我们测量了受精电位期间的膜电容。我们还使用离子选择性微电极测定了卵内的钾离子和氯离子浓度。受精后最初2分钟内电导最大。无论刺激是由一个精子还是多个精子提供,或者是人工激活,电导增加的幅度都是相同的,最大可达约40微西门子。受精过程涉及两种独立的电导:氯离子和钾离子。[K]i = 121 mM,[Cl]i = 44 mM。天然的外部介质是池塘水(在我们的实验中用10%的林格氏溶液近似);因此,钾离子和氯离子电导的增加会导致这两种离子外流。受精电流的平衡电位介于氯离子和钾离子的平衡电位(ECl和EK)之间,更接近ECl。10 mM的外部四乙铵(TEA)使平衡电位接近ECl,并使最大电导降低约一半。氯离子电导不会被4 - 乙酰氨基 - 4'-异硫氰基芪 - 2,2'-二磺酸(SITS)阻断。钾离子和氯离子电导的时间进程相似。受精时激活的对TEA有抗性的电导(主要是氯离子电导)随着膜电位变得更正而增加。未受精的卵中存在的电压敏感型钠离子电导在受精后消失。在受精过程中,这种电导太小,对受精电位的贡献不大。在受精电位上升后的最初2分钟内,即皮质囊泡胞吐期间,膜电容平均增加1.9倍。然后电容逐渐降低;受精后1小时,电容为未受精卵中电容值的82%。电导增加比电容增加提前几秒。因此,氯离子和钾离子通道的最初出现不能用皮质囊泡胞吐增加膜来解释。随后电导降低,这表明氯离子和钾离子通道的消失不是由膜去除引起的。

相似文献

引用本文的文献

2
Bioelectric mechanisms in regeneration: Unique aspects and future perspectives.再生中的生物电机制:独特方面与未来展望。
Semin Cell Dev Biol. 2009 Jul;20(5):543-56. doi: 10.1016/j.semcdb.2009.04.013. Epub 2009 May 3.
3
Biodiversity of voltage sensor domain proteins.电压传感器结构域蛋白的生物多样性。
Pflugers Arch. 2007 Jun;454(3):361-71. doi: 10.1007/s00424-007-0222-6. Epub 2007 Mar 9.

本文引用的文献

2
Types of muscarinic response in Xenopus oocytes.非洲爪蟾卵母细胞中的毒蕈碱反应类型。
Life Sci. 1980 Oct 13;27(15):1423-8. doi: 10.1016/0024-3205(80)90407-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验