Gurda Dorota, Handschuh Luiza, Kotkowiak Weronika, Jakubowski Hieronim
Institute of Bioorganic Chemistry, Poznań, Poland.
Amino Acids. 2015 Jul;47(7):1319-39. doi: 10.1007/s00726-015-1956-7. Epub 2015 Mar 24.
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [-log(P value) = 20-31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [-log(P value)] = 4-11; also affected by Hcy-thiolactone, [-log(P value) = 8-14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was 'atherosclerosis, coronary heart disease' [-log(P value) = 9-16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34-40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24-35) were 'small molecule biochemistry, neurological disease,' and 'cardiovascular system development and function'; and those affected by Hcy (score = 25-37) were 'amino acid metabolism, lipid metabolism,' 'cellular movement, and cardiovascular and nervous system development and function.' These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.
同型半胱氨酸(Hcy)代谢过程中的遗传或营养缺陷会导致高同型半胱氨酸血症(HHcy),并引发内皮功能障碍,这是动脉粥样硬化的一个标志。除了Hcy,相关代谢产物也会在HHcy中蓄积,但其在内皮功能障碍中的作用尚不清楚。在此,我们研究了Hcy-硫内酯、N-Hcy-蛋白和Hcy如何影响人脐静脉内皮细胞中的基因表达和分子途径。我们使用了微阵列技术、实时定量聚合酶链反应,并利用PANTHER、DAVID和Ingenuity Pathway Analysis(IPA)资源进行生物信息学分析。我们分别鉴定出受N-Hcy-蛋白、Hcy-硫内酯和Hcy调控的47、113和30种mRNA,并发现每种代谢产物都诱导出独特的基因表达模式。受Hcy-硫内酯影响的主要分子途径是染色质组织、一碳代谢和脂质相关过程[-log(P值)=20-31]。受N-Hcy-蛋白和Hcy影响的主要途径是血液凝固、含硫氨基酸代谢和脂质代谢[-log(P值)]=4-11;同时也受Hcy-硫内酯影响[-log(P值)=8-14]。与Hcy-硫内酯、N-Hcy-蛋白和Hcy相关的主要疾病是“动脉粥样硬化、冠心病”[-log(P值)=9-16]。受Hcy-硫内酯影响的得分最高的生物网络(得分=34-40)是心血管疾病和功能;受N-Hcy-蛋白影响的(得分=24-35)是“小分子生物化学、神经疾病”和“心血管系统发育和功能”;受Hcy影响的(得分=25-37)是“氨基酸代谢、脂质代谢”、“细胞运动以及心血管和神经系统发育与功能”。这些结果表明,每种Hcy代谢产物在对血管稳态至关重要的途径中独特地调节基因表达,并鉴定出与HHcy诱导的内皮功能障碍和血管疾病相关的新基因和途径。