Guerriero Gea, Hausman Jean-Francois, Strauss Joseph, Ertan Haluk, Siddiqui Khawar Sohail
Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
Plant Sci. 2015 May;234:180-93. doi: 10.1016/j.plantsci.2015.02.010. Epub 2015 Feb 25.
The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.
在当前以生物为基础、重视可再生资源增值的经济形势下,利用植物生物质作为生物材料和生物燃料生产的原料具有重要意义。真菌能够降解复杂且难降解的植物聚合物,分泌不同的酶来水解植物细胞壁多糖。本综述讨论了真菌以及极端嗜热细胞壁水解酶的当前研究趋势,这些酶能够耐受高效工业过程所需的极端物理化学条件。介绍了子囊菌门、担子菌门、接合菌门和新美鞭菌门真菌的分泌蛋白组,以及影响其组成的代谢线索(营养感知、碳氮代谢协调)。我们在综述结尾建议进一步的研究方向,一方面是对真菌中细胞壁降解酶产生的生理学和表观遗传学进行全面分析,另一方面是对功能未知的蛋白质和极端嗜热菌群的宏基因组学进行分析。还研究了整合生物加工、改变分泌途径和设计植物创建方面的当前进展。此外,考虑了基于协同、邻近和熵效应、融合酶、同源酶之间的结构导向重组以及磁性酶来提高酶的活性、稳定性和可重复使用性的最新进展,以期改善糖化作用。