Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria.
Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.
PLoS Genet. 2018 Apr 9;14(4):e1007322. doi: 10.1371/journal.pgen.1007322. eCollection 2018 Apr.
Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass.
不像大多数其他真菌,木霉属(Hypocreales,子囊菌门)中的霉菌是其他真菌的侵袭性寄生虫,也是植物生物质的高效分解者。尽管 Hypocrealean 真菌的营养转移很常见,但没有任何例子像 Trichoderma 那样具有如此广泛的底物通用性。对 23 种 Hypocrealean 真菌(包括 9 种 Trichoderma 种和相关的 Escovopsis weberi)的系统基因组分析表明, Trichoderma 属从一个具有有限纤维素分解能力的祖先进化而来,该祖先以真菌或节肢动物为食。基于基因树/种系发生树协调的 Trichoderma 编码植物细胞壁降解碳水化合物活性酶和辅助蛋白(pcwdCAZome,122 个基因家族)的进化分析表明,属的形成伴随着前所未有的水平基因转移(LGT)。 Trichoderma pcwdCAZome 中的近一半基因(41%)是通过从属于不同子囊菌门类群的植物相关丝状真菌的侧向基因转移(LGT)获得的,而没有观察到来自其他潜在供体的 LGT。除了能够以不相关的真菌(如担子菌)为食外,我们还表明, Trichoderma 能够寄生在广泛的子囊菌中,包括现存的 LGT 供体。在 E. weberi 中没有观察到这种现象,在其他寄生 Hypocrealean 真菌中也很少观察到。因此,我们的研究表明,LGT 与 Trichoderma 寄生分类上相关真菌的能力有关(在严格意义上达到内寄生)。这可能使主要以真菌为食的 Trichoderma 真菌进化为植物生物质的分解者。