Szakadáti Gyöngyi, Tóth András D, Oláh Ilona, Erdélyi László Sándor, Balla Tamas, Várnai Péter, Hunyady László, Balla András
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.).
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia-Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
Mol Pharmacol. 2015 Jun;87(6):972-81. doi: 10.1124/mol.114.097030. Epub 2015 Mar 24.
Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein-dependent and -independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase-tagged receptors and yellow fluorescent protein-tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II-stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II-stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.
I型血管紧张素受体(AT1-R)上的偏向性激动作用可通过激活G蛋白依赖性和非依赖性细胞反应实现不同的结果。在本研究中,我们调查了AT1-R的偏向性激活是否会导致该受体不同的调节方式和细胞内加工过程。我们分析了β-抑制蛋白结合、内吞作用以及随后的转运步骤,例如在表达野生型或偏向性突变受体的人胚肾293细胞中,AT1-R在不同配体作用下回收的早期和晚期阶段。在生物发光共振能量转移测量中,我们使用海肾荧光素酶标记的受体以及黄色荧光蛋白标记的β-抑制蛋白2、Rab5、Rab7和Rab11蛋白,以追踪刺激后受体的命运。我们发现,使用选择性配体时不仅受体的信号传导不同,而且细胞内的命运也由刺激类型决定。血管紧张素II刺激的AT1-R的β-抑制蛋白结合和内化动力学与偏向性激动剂刺激的不同。同样,在β-抑制蛋白结合和内吞作用方面,血管紧张素II刺激的野生型AT1-R与偏向性突变体AT1-R(DRY/AAY AT1-R)相比也存在差异。我们发现,受体在偏向性激动剂刺激下内化动力学的差异是由于质膜磷脂酰肌醇4,5-二磷酸消耗的差异所致。此外,β-抑制蛋白结合的稳定性是内化的AT1-R受体后期命运的主要决定因素。