Tang Wei, Strachan Ryan T, Lefkowitz Robert J, Rockman Howard A
From the Departments of Medicine.
From the Departments of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.
J Biol Chem. 2014 Oct 10;289(41):28271-83. doi: 10.1074/jbc.M114.585067. Epub 2014 Aug 28.
It has recently been appreciated that the angiotensin II type 1 receptor (AT1R), a prototypic member of the G protein-coupled receptor superfamily, also functions as a mechanosensor. Specifically, mechanical stretch activates the AT1R to promote downstream signaling mediated exclusively by the multifunctional scaffold protein, β-arrestin, in a manner consistent with previously identified β-arrestin-biased ligands. However, the ligand-independent mechanism by which mechanical stretch promotes β-arrestin-biased signaling remains unknown. Implicit in the concept of biased agonism (i.e. the ability of an agonist to activate a subset of receptor-mediated signaling pathways) is the notion that distinct active conformations of the receptor mediate differential activation of signaling pathways. Here we determined whether mechanical stretch stabilizes distinct β-arrestin-activating conformations of the AT1R by using β-arrestin2-biased agonists as conformational probes in pharmacological and biophysical assays. When tested at cells expressing the AT1R fused to β-arrestin (AT1R-β-arrestin2), we found that osmotic stretch increased the binding affinity and potency of the β-arrestin-biased agonist TRV120023, with no effect on the balanced agonist AngII. In addition, the effect of osmotic stretch on ERK activation was markedly augmented in cells expressing the AT1R-β-arrestin2 fusion compared with the wild type AT1R and completely blocked in cells expressing the AT1R-Gq fusion. Biophysical experiments with an intramolecular BRET β-arrestin2 biosensor revealed that osmotic stretch and TRV120023 activate AT1Rs to stabilize β-arrestin2 active conformations that differ from those stabilized by the AT1R activated by angiotensin II. Together, these data support a novel ligand-independent mechanism whereby mechanical stretch allosterically stabilizes specific β-arrestin-biased active conformations of the AT1R and has important implications for understanding pathophysiological AT1R signaling.
最近人们认识到,血管紧张素II 1型受体(AT1R)作为G蛋白偶联受体超家族的一个典型成员,也起着机械传感器的作用。具体而言,机械牵张激活AT1R,以促进仅由多功能支架蛋白β-抑制蛋白介导的下游信号传导,其方式与先前鉴定的β-抑制蛋白偏向性配体一致。然而,机械牵张促进β-抑制蛋白偏向性信号传导的非配体依赖机制仍不清楚。偏向激动作用(即激动剂激活受体介导的信号通路子集的能力)概念中隐含的观点是,受体的不同活性构象介导信号通路的差异激活。在这里,我们通过在药理学和生物物理实验中使用β-抑制蛋白2偏向性激动剂作为构象探针,来确定机械牵张是否能稳定AT1R不同的β-抑制蛋白激活构象。当在表达与β-抑制蛋白融合的AT1R(AT1R-β-抑制蛋白2)的细胞中进行测试时,我们发现渗透压牵张增加了β-抑制蛋白偏向性激动剂TRV120023的结合亲和力和效力,而对平衡激动剂血管紧张素II没有影响。此外,与野生型AT1R相比,在表达AT1R-β-抑制蛋白2融合体的细胞中,渗透压牵张对细胞外信号调节激酶(ERK)激活的影响明显增强,而在表达AT1R-Gq融合体的细胞中则完全被阻断。使用分子内生物发光共振能量转移(BRET)β-抑制蛋白2生物传感器进行的生物物理实验表明,渗透压牵张和TRV120023激活AT1R以稳定β-抑制蛋白2的活性构象,这些构象与血管紧张素II激活的AT1R所稳定的构象不同。总之,这些数据支持了一种新的非配体依赖机制,即机械牵张通过变构稳定AT1R特定的β-抑制蛋白偏向性活性构象,这对于理解病理生理状态下的AT1R信号传导具有重要意义。