Suppr超能文献

膜拉伸对β-抑制蛋白偏向性血管紧张素II 1型受体信号传导的变构调节。

Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch.

作者信息

Tang Wei, Strachan Ryan T, Lefkowitz Robert J, Rockman Howard A

机构信息

From the Departments of Medicine.

From the Departments of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710.

出版信息

J Biol Chem. 2014 Oct 10;289(41):28271-83. doi: 10.1074/jbc.M114.585067. Epub 2014 Aug 28.

Abstract

It has recently been appreciated that the angiotensin II type 1 receptor (AT1R), a prototypic member of the G protein-coupled receptor superfamily, also functions as a mechanosensor. Specifically, mechanical stretch activates the AT1R to promote downstream signaling mediated exclusively by the multifunctional scaffold protein, β-arrestin, in a manner consistent with previously identified β-arrestin-biased ligands. However, the ligand-independent mechanism by which mechanical stretch promotes β-arrestin-biased signaling remains unknown. Implicit in the concept of biased agonism (i.e. the ability of an agonist to activate a subset of receptor-mediated signaling pathways) is the notion that distinct active conformations of the receptor mediate differential activation of signaling pathways. Here we determined whether mechanical stretch stabilizes distinct β-arrestin-activating conformations of the AT1R by using β-arrestin2-biased agonists as conformational probes in pharmacological and biophysical assays. When tested at cells expressing the AT1R fused to β-arrestin (AT1R-β-arrestin2), we found that osmotic stretch increased the binding affinity and potency of the β-arrestin-biased agonist TRV120023, with no effect on the balanced agonist AngII. In addition, the effect of osmotic stretch on ERK activation was markedly augmented in cells expressing the AT1R-β-arrestin2 fusion compared with the wild type AT1R and completely blocked in cells expressing the AT1R-Gq fusion. Biophysical experiments with an intramolecular BRET β-arrestin2 biosensor revealed that osmotic stretch and TRV120023 activate AT1Rs to stabilize β-arrestin2 active conformations that differ from those stabilized by the AT1R activated by angiotensin II. Together, these data support a novel ligand-independent mechanism whereby mechanical stretch allosterically stabilizes specific β-arrestin-biased active conformations of the AT1R and has important implications for understanding pathophysiological AT1R signaling.

摘要

最近人们认识到,血管紧张素II 1型受体(AT1R)作为G蛋白偶联受体超家族的一个典型成员,也起着机械传感器的作用。具体而言,机械牵张激活AT1R,以促进仅由多功能支架蛋白β-抑制蛋白介导的下游信号传导,其方式与先前鉴定的β-抑制蛋白偏向性配体一致。然而,机械牵张促进β-抑制蛋白偏向性信号传导的非配体依赖机制仍不清楚。偏向激动作用(即激动剂激活受体介导的信号通路子集的能力)概念中隐含的观点是,受体的不同活性构象介导信号通路的差异激活。在这里,我们通过在药理学和生物物理实验中使用β-抑制蛋白2偏向性激动剂作为构象探针,来确定机械牵张是否能稳定AT1R不同的β-抑制蛋白激活构象。当在表达与β-抑制蛋白融合的AT1R(AT1R-β-抑制蛋白2)的细胞中进行测试时,我们发现渗透压牵张增加了β-抑制蛋白偏向性激动剂TRV120023的结合亲和力和效力,而对平衡激动剂血管紧张素II没有影响。此外,与野生型AT1R相比,在表达AT1R-β-抑制蛋白2融合体的细胞中,渗透压牵张对细胞外信号调节激酶(ERK)激活的影响明显增强,而在表达AT1R-Gq融合体的细胞中则完全被阻断。使用分子内生物发光共振能量转移(BRET)β-抑制蛋白2生物传感器进行的生物物理实验表明,渗透压牵张和TRV120023激活AT1R以稳定β-抑制蛋白2的活性构象,这些构象与血管紧张素II激活的AT1R所稳定的构象不同。总之,这些数据支持了一种新的非配体依赖机制,即机械牵张通过变构稳定AT1R特定的β-抑制蛋白偏向性活性构象,这对于理解病理生理状态下的AT1R信号传导具有重要意义。

相似文献

1
Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch.
J Biol Chem. 2014 Oct 10;289(41):28271-83. doi: 10.1074/jbc.M114.585067. Epub 2014 Aug 28.
2
Mechanoactivation of the angiotensin II type 1 receptor induces β-arrestin-biased signaling through Gα coupling.
J Cell Biochem. 2018 Apr;119(4):3586-3597. doi: 10.1002/jcb.26552. Epub 2018 Jan 4.
4
Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation.
J Biol Chem. 2020 Sep 18;295(38):13169-13180. doi: 10.1074/jbc.RA120.014330. Epub 2020 Jul 23.
5
Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms.
PLoS One. 2010 Nov 30;5(11):e14135. doi: 10.1371/journal.pone.0014135.
6
Angiotensin type 1A receptor regulates β-arrestin binding of the β-adrenergic receptor via heterodimerization.
Mol Cell Endocrinol. 2017 Feb 15;442:113-124. doi: 10.1016/j.mce.2016.11.027. Epub 2016 Nov 28.
7
Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93. doi: 10.1073/pnas.0804246105. Epub 2008 Jul 11.

引用本文的文献

1
A force-sensitive adhesion GPCR is required for equilibrioception.
Cell Res. 2025 Apr;35(4):243-264. doi: 10.1038/s41422-025-01075-x. Epub 2025 Feb 18.
2
Mechanical stress and anionic lipids synergistically stabilize an atypical structure of the angiotensin II type 1 receptor (AT1).
PLoS Comput Biol. 2024 Nov 13;20(11):e1012559. doi: 10.1371/journal.pcbi.1012559. eCollection 2024 Nov.
3
Cell swelling enhances ligand-driven β-adrenergic signaling.
Nat Commun. 2024 Sep 7;15(1):7822. doi: 10.1038/s41467-024-52191-y.
4
Phosphorylation patterns in the AT1R C-terminal tail specify distinct downstream signaling pathways.
Sci Signal. 2024 Aug 13;17(849):eadk5736. doi: 10.1126/scisignal.adk5736.
5
G Protein-Coupled Receptors: A Century of Research and Discovery.
Circ Res. 2024 Jun 21;135(1):174-197. doi: 10.1161/CIRCRESAHA.124.323067. Epub 2024 Jun 20.
6
Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor.
Nat Commun. 2023 Aug 4;14(1):4690. doi: 10.1038/s41467-023-40433-4.
7
Insights Into the Role of Angiotensin-II AT Receptor-Dependent β-Arrestin Signaling in Cardiovascular Disease.
Hypertension. 2024 Jan;81(1):6-16. doi: 10.1161/HYPERTENSIONAHA.123.19419. Epub 2023 Jul 14.
8
Advances in the allostery of angiotensin II type 1 receptor.
Cell Biosci. 2023 Jun 17;13(1):110. doi: 10.1186/s13578-023-01063-x.
9
Vascular mechanotransduction.
Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5.
10
Pathophysiology and pharmacology of G protein-coupled receptors in the heart.
Cardiovasc Res. 2023 May 22;119(5):1117-1129. doi: 10.1093/cvr/cvac171.

本文引用的文献

1
Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries.
Circ Res. 2014 Jul 7;115(2):263-72. doi: 10.1161/CIRCRESAHA.115.302882. Epub 2014 May 16.
2
Allosteric sodium in class A GPCR signaling.
Trends Biochem Sci. 2014 May;39(5):233-44. doi: 10.1016/j.tibs.2014.03.002. Epub 2014 Apr 21.
3
Recent developments in biased agonism.
Curr Opin Cell Biol. 2014 Apr;27:18-24. doi: 10.1016/j.ceb.2013.10.008. Epub 2013 Nov 20.
4
Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR).
J Biol Chem. 2014 May 16;289(20):14211-24. doi: 10.1074/jbc.M114.548131. Epub 2014 Mar 25.
5
Molecular control of δ-opioid receptor signalling.
Nature. 2014 Feb 13;506(7487):191-6. doi: 10.1038/nature12944. Epub 2014 Jan 12.
6
Activation and allosteric modulation of a muscarinic acetylcholine receptor.
Nature. 2013 Dec 5;504(7478):101-6. doi: 10.1038/nature12735. Epub 2013 Nov 20.
7
Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.
Circ Res. 2013 Nov 8;113(11):1192-5. doi: 10.1161/CIRCRESAHA.113.302501.
8
Shear stress-induced Ang II AT1 receptor activation: G-protein dependent and independent mechanisms.
Biochem Biophys Res Commun. 2013 May 10;434(3):647-52. doi: 10.1016/j.bbrc.2013.04.005. Epub 2013 Apr 11.
9
β-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury.
Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H1001-10. doi: 10.1152/ajpheart.00475.2012. Epub 2012 Aug 10.
10
Where have all the active receptor states gone?
Nat Chem Biol. 2012 Jul 18;8(8):674-7. doi: 10.1038/nchembio.1024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验