文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

血管紧张素 II 型 1 受体的偏向信号转导可以通过不同的机制介导。

Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms.

机构信息

Laboratory for Molecular Cardiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

PLoS One. 2010 Nov 30;5(11):e14135. doi: 10.1371/journal.pone.0014135.


DOI:10.1371/journal.pone.0014135
PMID:21152433
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2994726/
Abstract

BACKGROUND: Seven transmembrane receptors (7TMRs) can adopt different active conformations facilitating a selective activation of either G protein or β-arrestin-dependent signaling pathways. This represents an opportunity for development of novel therapeutics targeting selective biological effects of a given receptor. Several studies on pathway separation have been performed, many of these on the Angiotensin II type 1 receptor (AT1R). It has been shown that certain ligands or mutations facilitate internalization and/or recruitment of β-arrestins without activation of G proteins. However, the underlying molecular mechanisms remain largely unresolved. For instance, it is unclear whether such selective G protein-uncoupling is caused by a lack of ability to interact with G proteins or rather by an increased ability of the receptor to recruit β-arrestins. Since uncoupling of G proteins by increased ability to recruit β-arrestins could lead to different cellular or in vivo outcomes than lack of ability to interact with G proteins, it is essential to distinguish between these two mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We studied five AT1R mutants previously published to display pathway separation: D74N, DRY/AAY, Y292F, N298A, and Y302F (Ballesteros-Weinstein numbering: 2.50, 3.49-3.51, 7.43, 7.49, and 7.53). We find that D74N, DRY/AAY, and N298A mutants are more prone to β-arrestin recruitment than WT. In contrast, receptor mutants Y292F and Y302F showed impaired ability to recruit β-arrestin in response to Sar1-Ile4-Ile8 (SII) Ang II, a ligand solely activating the β-arrestin pathway. CONCLUSIONS/SIGNIFICANCE: Our analysis reveals that the underlying conformations induced by these AT1R mutants most likely represent principally different mechanisms of uncoupling the G protein, which for some mutants may be due to their increased ability to recruit β-arrestin2. Hereby, these findings have important implications for drug discovery and 7TMR biology and illustrate the necessity of uncovering the exact molecular determinants for G protein-coupling and β-arrestin recruitment, respectively.

摘要

背景:七次跨膜受体(7TMRs)可以采用不同的活性构象,从而选择性地激活 G 蛋白或β-arrestin 依赖性信号通路。这为开发针对特定受体的选择性生物学效应的新型治疗药物提供了机会。已经进行了许多关于途径分离的研究,其中许多是关于血管紧张素 II 型 1 型受体(AT1R)的。已经表明,某些配体或突变促进了β-arrestin 的内化和/或募集,而不激活 G 蛋白。然而,潜在的分子机制在很大程度上仍未得到解决。例如,尚不清楚这种选择性 G 蛋白偶联的缺失是由于缺乏与 G 蛋白相互作用的能力,还是由于受体募集β-arrestin 的能力增强所致。由于通过增强募集β-arrestin 的能力而导致 G 蛋白解偶联可能导致与缺乏与 G 蛋白相互作用的能力不同的细胞或体内结果,因此必须区分这两种机制。

方法/主要发现:我们研究了先前发表的五个显示途径分离的 AT1R 突变体:D74N、DRY/AAY、Y292F、N298A 和 Y302F(Ballesteros-Weinstein 编号:2.50、3.49-3.51、7.43、7.49 和 7.53)。我们发现 D74N、DRY/AAY 和 N298A 突变体比 WT 更容易募集β-arrestin。相比之下,受体突变体 Y292F 和 Y302F 对 Sar1-Ile4-Ile8(SII)Ang II 的反应显示出募集β-arrestin 的能力受损,SII Ang II 是一种仅激活β-arrestin 途径的配体。

结论/意义:我们的分析表明,这些 AT1R 突变体诱导的潜在构象很可能代表了不同的解偶联 G 蛋白的主要机制,对于某些突变体,其原因可能是它们募集β-arrestin2 的能力增强。因此,这些发现对药物发现和 7TMR 生物学具有重要意义,并说明了分别揭示 G 蛋白偶联和β-arrestin 募集的确切分子决定因素的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/ead5e46f1955/pone.0014135.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/88e2d137115c/pone.0014135.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/cc06404b5562/pone.0014135.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/29449df14d2d/pone.0014135.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/039fe3c36258/pone.0014135.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/99da557cabc7/pone.0014135.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/8b776b4b6ddd/pone.0014135.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/31e11febf50e/pone.0014135.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/09efa1701d92/pone.0014135.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/8e330836a1c6/pone.0014135.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/072de8c09dae/pone.0014135.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/ead5e46f1955/pone.0014135.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/88e2d137115c/pone.0014135.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/cc06404b5562/pone.0014135.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/29449df14d2d/pone.0014135.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/039fe3c36258/pone.0014135.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/99da557cabc7/pone.0014135.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/8b776b4b6ddd/pone.0014135.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/31e11febf50e/pone.0014135.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/09efa1701d92/pone.0014135.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/8e330836a1c6/pone.0014135.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/072de8c09dae/pone.0014135.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3843/2994726/ead5e46f1955/pone.0014135.g011.jpg

相似文献

[1]
Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms.

PLoS One. 2010-11-30

[2]
Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch.

J Biol Chem. 2014-10-10

[3]
Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations.

J Biol Chem. 2015-6-19

[4]
Investigation of the fate of type I angiotensin receptor after biased activation.

Mol Pharmacol. 2015-6

[5]
The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network.

J Biol Chem. 2011-4-18

[6]
β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1.

J Biol Chem. 2015-8-21

[7]
Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription.

J Biol Chem. 2008-1-25

[8]
ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment.

PLoS One. 2013-12-17

[9]
Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.

Proc Natl Acad Sci U S A. 2008-7-22

[10]
Stable interaction between beta-arrestin 2 and angiotensin type 1A receptor is required for beta-arrestin 2-mediated activation of extracellular signal-regulated kinases 1 and 2.

J Biol Chem. 2004-11-12

引用本文的文献

[1]
Structural and functional determination of peptide versus small molecule ligand binding at the apelin receptor.

Nat Commun. 2024-12-27

[2]
Advances in the allostery of angiotensin II type 1 receptor.

Cell Biosci. 2023-6-17

[3]
Development of a Non-Peptide Angiotensin II Type 1 Receptor Ligand by Structural Modification of Olmesartan as a Biased Agonist.

Biomedicines. 2023-5-19

[4]
Signaling Modulation via Minimal C-Terminal Modifications of Apelin-13.

ACS Pharmacol Transl Sci. 2023-1-26

[5]
Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD.

Neuron. 2022-10-5

[6]
The NPXXY Motif Regulates β-Arrestin Recruitment by the CB1 Cannabinoid Receptor.

Cannabis Cannabinoid Res. 2023-10

[7]
Insights into the actions of angiotensin-1 receptor (AT1R) inverse agonists: Perspectives and implications in COVID-19 treatment.

EXCLI J. 2021-2-8

[8]
Advances in therapeutic peptides targeting G protein-coupled receptors.

Nat Rev Drug Discov. 2020-3-19

[9]
Not So Dry After All: DRY Mutants of the AT1 Receptor and H1 Receptor Can Induce G-Protein-Dependent Signaling.

ACS Omega. 2020-2-3

[10]
Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR.

Science. 2020-2-21

本文引用的文献

[1]
beta-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations.

Br J Pharmacol. 2010-9

[2]
Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR).

Proc Natl Acad Sci U S A. 2010-8-4

[3]
Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists.

Mol Cell Proteomics. 2010-4-2

[4]
An angiotensin II type 1 receptor activation switch patch revealed through evolutionary trace analysis.

Biochem Pharmacol. 2010-3-21

[5]
A G protein-coupled receptor at work: the rhodopsin model.

Trends Biochem Sci. 2009-10-21

[6]
Diversity in arrestin function.

Cell Mol Life Sci. 2009-9

[7]
The structure and function of G-protein-coupled receptors.

Nature. 2009-5-21

[8]
Ligand binding and micro-switches in 7TM receptor structures.

Trends Pharmacol Sci. 2009-5

[9]
Pharmacologic perspectives of functional selectivity by the angiotensin II type 1 receptor.

Trends Cardiovasc Med. 2008-11

[10]
Molecular determinants of angiotensin II type 1 receptor functional selectivity.

J Mol Cell Cardiol. 2009-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索