Centre for Integrative Bioinformatics, VU University, Amsterdam, The Netherlands; Netherlands Consortium for Systems Biology (NCSB), Amsterdam, The Netherlands.
Section Functional Genomics, Dept. Clinical Genetics, VU University Medical Center,Amsterdam, The Netherlands; Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
PLoS One. 2015 Mar 25;10(3):e0119016. doi: 10.1371/journal.pone.0119016. eCollection 2015.
Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer's disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor.
预测生化网络中代谢通量的分布是系统生物学的主要研究内容。有几个数据库提供了不同生物体的代谢重建。软件可用于分析通量分布,其中包括专有的 MATLAB 环境。鉴于 R 计算环境拥有庞大的用户群,因此在 R 中实现通量分析的简单实现似乎是可取的,并且将方便与用于处理基因表达数据的计算工具进行交互。我们扩展了 R 软件包 BiGGR,这是 R 中代谢通量分析的实现。BiGGR 利用公共代谢重建数据库,包含 BiGG 数据库和以系统生物学标记语言 (SBML) 对象表示的人类代谢重建 Recon2。可以通过查询数据库来组装模型,以获取感兴趣的途径、基因或反应。然后可以通过使用线性逆建模算法最大化或最小化目标函数来估计通量。此外,BiGGR 提供了通过对约束多维通量空间进行采样来量化通量估计不确定性的功能。结果,构建了与测量数据在精度范围内一致的可能通量配置的集合。BiGGR 还使用超图自动可视化代谢网络的选定部分,其中超边的宽度与估计的通量值成正比。BiGGR 支持以 SBML 编码的模型的导入和导出,因此与不同的建模和分析工具具有互操作性。作为应用示例,我们使用中心碳代谢模型计算了健康人脑的通量分布。我们引入了一种新算法,称为具有等式和不等式的最小二乘通量平衡分析 (Lsei-FBA),用于预测通量变化,例如在疾病期间从基因表达变化。我们使用 Lsei-FBA 对阿尔茨海默病的大脑代谢通量模式的估计与患者大脑代谢的独立测量结果一致。BiGGR 的这个第二版可从 Bioconductor 获得。