Suppr超能文献

一种应对抗菌药物耐药性挑战的多层面“组学”方法。

A multifaceted 'omics' approach for addressing the challenge of antimicrobial resistance.

作者信息

Cohen Asi, Bont Louis, Engelhard Dan, Moore Edward, Fernández David, Kreisberg-Greenblatt Racheli, Oved Kfir, Eden Eran, Hays John P

机构信息

MeMed Diagnostics, Tirat Carmel, Israel.

出版信息

Future Microbiol. 2015;10(3):365-76. doi: 10.2217/fmb.14.127.

Abstract

The inappropriate use of antibiotics has severe global health and economic consequences, including the emergence of antibiotic-resistant bacteria. A major driver of antibiotic misuse is the inability to accurately distinguish between bacterial and viral infections based on currently available diagnostic solutions. A multifaceted 'omics' approach that integrates personalized patient data such as genetic predisposition to infections (genomics), natural microbiota composition and immune response to infection (proteomics and transcriptomics) together with comprehensive pathogen profiling has the potential to help physicians improve their antimicrobial prescribing practices. In this respect, the EU has funded a multidisciplinary project (TAILORED-Treatment) that will develop novel omics-based personalized treatment schemes that have the potential to reduce antibiotic consumption, and help limiting the spread of antibiotic resistance.

摘要

抗生素的不当使用造成了严重的全球健康和经济后果,包括抗生素耐药菌的出现。抗生素滥用的一个主要驱动因素是基于现有诊断方法无法准确区分细菌感染和病毒感染。一种多方面的“组学”方法,将个性化患者数据(如感染的遗传易感性(基因组学)、天然微生物群组成和对感染的免疫反应(蛋白质组学和转录组学))与全面的病原体分析相结合,有可能帮助医生改进抗菌药物的处方做法。在这方面,欧盟资助了一个多学科项目(TAILORED-Treatment),该项目将开发基于组学的新型个性化治疗方案,有望减少抗生素的使用,并有助于限制抗生素耐药性的传播。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验