Nadal-Ribelles Mariona, Mas Glòria, Millán-Zambrano Gonzalo, Solé Carme, Ammerer Gustav, Chávez Sebastián, Posas Francesc, de Nadal Eulàlia
Cell signaling unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain.
Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.
Nucleic Acids Res. 2015 May 26;43(10):4937-49. doi: 10.1093/nar/gkv220. Epub 2015 Mar 26.
Chromatin remodeling is essential for proper adaptation to extracellular stimuli. The p38-related Hog1 SAPK is an important regulator of transcription that mediates chromatin remodeling upon stress. Hog1 targets the RSC chromatin remodeling complex to stress-responsive genes and rsc deficient cells display reduced induction of gene expression. Here we show that the absence of H3K4 methylation, either achieved by deletion of the SET1 methyltransferase or by amino acid substitution of H3K4, bypasses the requirement of RSC for stress-responsive gene expression. Monomethylation of H3K4 is specifically inhibiting RSC-independent chromatin remodeling and thus, it prevents osmostress-induced gene expression. The absence of H3K4 monomethylation permits that the association of alternative remodelers with stress-responsive genes and the Swr1 complex (SWR-C) is instrumental in the induction of gene expression upon stress. Accordingly, the absence of SWR-C or histone H2A.Z results in compromised chromatin remodeling and impaired gene expression in the absence of RSC and H3K4 methylation. These results indicate that expression of stress-responsive genes is controlled by two remodeling mechanisms: RSC in the presence of monomethylated H3K4, and SWR-C in the absence of H3K4 monomethylation. Our findings point to a novel role for H3K4 monomethylation in dictating the specificity of chromatin remodeling, adding an extra layer of regulation to the transcriptional stress response.
染色质重塑对于正确适应细胞外刺激至关重要。与p38相关的Hog1应激激活蛋白激酶(SAPK)是转录的重要调节因子,在应激时介导染色质重塑。Hog1将RSC染色质重塑复合物靶向应激反应基因,而rsc缺陷细胞显示出基因表达的诱导减少。在这里,我们表明,通过缺失SET1甲基转移酶或通过H3K4的氨基酸取代实现的H3K4甲基化缺失,绕过了RSC对应激反应基因表达的需求。H3K4的单甲基化特异性抑制不依赖RSC的染色质重塑,因此,它阻止了渗透应激诱导的基因表达。H3K4单甲基化的缺失允许替代重塑因子与应激反应基因的结合,并且Swr1复合物(SWR-C)在应激时基因表达的诱导中起作用。因此,在没有RSC和H3K4甲基化的情况下,SWR-C或组蛋白H2A.Z的缺失导致染色质重塑受损和基因表达受损。这些结果表明,应激反应基因的表达受两种重塑机制控制:存在单甲基化H3K4时的RSC,以及不存在H3K4单甲基化时的SWR-C。我们的发现指出了H3K4单甲基化在决定染色质重塑特异性方面的新作用,为转录应激反应增加了一层额外的调控。