Wang Lin, Chen Xiaoshuang, Hu Yibin, Wang Shao-Wei, Lu Wei
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, Shanghai 200083, China.
Nanoscale. 2015 Apr 28;7(16):7284-90. doi: 10.1039/c4nr07689c.
Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8 TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5 TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.
石墨烯场效应晶体管(FET)和纳米图案化石墨烯片中的等离子体波,凭借其电学可调性以及与光的强相互作用,已成为太赫兹和红外在包括遥感、生物医学、军事以及许多其他领域潜在应用的极具潜力的候选者。在这项工作中,我们研究了纳米级石墨烯FET中直至尺度极限的等离子体波的激发和传播特性。由于量子电容效应,等离子体波与态密度(DOS)分布呈现出强相关性。结果表明,电可调谐等离子体共振在栅极电压上具有功率依赖的V0.8 TG关系,这源于原始石墨烯中态密度(DOS)对能量的线性依赖,这与仅具有V0.5 TG依赖的经典电容主导的情况形成显著差异。不同晶体管尺寸的结果表明纳米级石墨烯FET在高效电光调制或太赫兹或红外辐射检测方面的潜在应用。此外,我们强调了等离子体共振激发在探测强关联电子系统中的多体相互作用和量子物质态方面的前景。这项研究揭示了修饰/纳米级石墨烯FET中等离子体波的关键特性,并为定制等离子体能带工程以及扩展其在太赫兹和中红外区域的应用铺平了道路。